Advertisement

Color Constancy Using Single Colors

  • Simone Bianco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)

Abstract

This work investigates if the von Kries adaptation can be generalized to deal with single colored patches. We investigate which colored patches can give statistically equivalent performance to a white patch for von Kries adaptation. The investigation is then extended to couples of colors, and the analysis of the characteristics of the colors forming the couples is carried out. We focus here on single and couples of colors since common objects and logos are usually composed by a small number of colors.

Keywords

Color Constancy Single Color Colored Patch Diagonal Mapping White Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hordley, S.D.: Scene illuminant estimation: past, present, and future. Color Research & Application 31(4), 303–314 (2006)CrossRefGoogle Scholar
  2. 2.
    Gijsenij, A., Gevers, T., van de Weijer, J.: Computational color constancy: survey and experiments. IEEE TIP 20(9), 2475–2489 (2011)Google Scholar
  3. 3.
    Funt, B., Barnard, K., Martin, L.: Is Machine Colour Constancy Good Enough? In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 445–459. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Automatic Color Constancy Algorithm Selection and Combination. Pattern Recognition 43(3), 695–705 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gijsenij, A., Gevers, T.: Color Constancy using Natural Image Statistics and Scene Semantics. IEEE TPAMI 33(4), 687–698 (2011)CrossRefGoogle Scholar
  6. 6.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving Color Constancy Using Indoor-Outdoor Image Classification. IEEE TIP 17(12), 2381–2392 (2008)MathSciNetGoogle Scholar
  7. 7.
    van de Weijer, J., Schmid, C., Verbeek, J.: Using High-Level Visual Information for Color Constancy. In: IEEE ICCV, pp. 1–8 (2007)Google Scholar
  8. 8.
    Hel-Or, H.Z., Wandell, B.A.: Object-based illuminant classification. Pattern Recognition 35(8), 1723–1732 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Moreno, A., Fernando, B., Kani, B., Saha, S., Karaoglu, S.: Color Correction: A Novel Weighted Von Kries Model Based on Memory Colors. In: Schettini, R., Tominaga, S., Trémeau, A. (eds.) CCIW 2011. LNCS, vol. 6626, pp. 165–175. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Bianco, S., Schettini, R.: Color constancy using faces. In: IEEE CVPR, pp. 65–72 (2012)Google Scholar
  11. 11.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. IJCV 61(1), 103–112 (2005)CrossRefGoogle Scholar
  12. 12.
    Wandell, B.A.: The synthesis and analysis of color images. IEEE TPAMI 9(1), 2–13 (1987)CrossRefGoogle Scholar
  13. 13.
    Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: a simple, unifying framework for color constancy. IEEE TPAMI 23(11), 1209–1221 (2001)CrossRefGoogle Scholar
  14. 14.
    West, G., Brill, M.H.: Necessary and sufficient conditions for von Kries chromatic adaptation to give colour constancy. J. of Math. Biol. 15, 249–258 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Land, E.H.: The retinex theory of color vision. Scientific American 237(6), 108–128 (1977)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Color constancy: generalized diagonal transforms suffice. JOSA A 11(11), 3011–3019 (1994)CrossRefGoogle Scholar
  17. 17.
    Forsyth, D.: A novel algorithm for color constancy. IJCV 5, 5–36 (1990)CrossRefGoogle Scholar
  18. 18.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)CrossRefGoogle Scholar
  19. 19.
    Bianco, S., Bruna, A., Naccari, F., Schettini, R.: Color space transformations for digital photography exploiting information about the illuminant estimation process. JOSA A 29(3), 374–384 (2012)CrossRefGoogle Scholar
  20. 20.
    Moroney, N., Fairchild, M.D., Hunt, R.W.G., Li, C., Luo, M.R., Newman, T.: The CIECAM02 Color Appearance Model. In: Proc. of the 10th CIC, pp. 23–27 (2002)Google Scholar
  21. 21.
    van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning Color Names for Real-World Applications. IEEE TIP 18(7), 1512–1524 (2009)Google Scholar
  22. 22.
    Chong, H.Y., Gortler, S.J., Zickler, T.: The von Kries hypothesis and a basis for color constancy. In: IEEE ICCV, pp. 1–8 (2007)Google Scholar
  23. 23.
    Buchsbaum, G.: A spatial processor model for object color perception. Journal of Franklin Institute 310, 1–26 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simone Bianco
    • 1
  1. 1.University of Milano-BicoccaItaly

Personalised recommendations