Base Materials for Photometric Stereo

  • David Tingdahl
  • Christoph Godau
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)


Image-based capture of material appearance has been extensively studied, but the quality of the results and generality of the applied methods leave a lot of room for improvement. Most existing methods rely on parametric models of reflectance and require complex hardware systems or accurate geometric models that are not always available or practical. Rather than independently estimating reflectance properties for each surface point, it is common to express the reflectance as a combination of base materials inherent to each particular object or scene.

We propose a method for efficient and automatic extraction of base materials in a photometric stereo system. After jointly estimating per-pixel reflectances and refined surface normals using these materials, we can render photo-realistic images of complex objects under novel lighting conditions in real time.


  1. 1.
    Weyrich, T., Lawrence, J., Lensch, H., Rusinkiewicz, S., Zickler, T.: Principles of Appearance Acquisition and Representation. Foundations and Trends in Computer Graphics and Vision 4(2), 75–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Woodham, R.J.: A Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar
  3. 3.
    Chandraker, M., Agarwal, S., Kriegman, D.: ShadowCuts: Photometric Stereo with Shadows. In: CVPR, pp. 1–8 (2007)Google Scholar
  4. 4.
    Verbiest, F., Van Gool, L.: Photometric stereo with coherent outlier handling and confidence estimation. In: CVPR, pp. 1–8 (2008)Google Scholar
  5. 5.
    Hertzmann, A., Seitz, S.M.: Example-based photometric stereo: shape reconstruction with general, varying BRDFs. PAMI 27(8), 1254–1264 (2005)CrossRefGoogle Scholar
  6. 6.
    Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and Spatially-Varying BRDFs from Photometric Stereo. PAMI 32(6), 1060–1071 (2010)CrossRefGoogle Scholar
  7. 7.
    Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Rendering Techniques, pp. 11–22 (1998)Google Scholar
  8. 8.
    Romeiro, F., Vasilyev, Y., Zickler, T.: Passive Reflectometry. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 859–872. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Romeiro, F., Zickler, T.: Blind Reflectometry. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 45–58. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Weinmann, M., Schwartz, C.: A multi-camera, multi-projector super-resolution framework for structured light. In: 3DIMPVT, pp. 397–404 (2011)Google Scholar
  11. 11.
    Lensch, H.P.A., Goesele, M., Kautz, J., Heidrich, W., Seidel, H.-P.: Image-based reconstruction of spatially varying materials. In: Eurographics Workshop on Rendering Techniques, pp. 103–114 (2001)Google Scholar
  12. 12.
    Haber, T., Fuchs, C., Bekaer, P., Seidel, H., Goesele, M., Lensch, H.: Relighting objects from image collections. In: CVPR, pp. 627–634 (2009)Google Scholar
  13. 13.
    Alldrin, N., Zickler, T.: Photometric stereo with non-parametric and spatially-varying reflectance. In: CVPR (2008)Google Scholar
  14. 14.
    Ren, P., Wang, J., Snyder, J., Tong, X., Guo, B.: Pocket reflectometry. ACM Transactions on Graphics 30(4), 45:1–45:10 (2011)Google Scholar
  15. 15.
    Wang, O., Gunawardane, P., Scher, S., Davis, J.: Material classification using BRDF slices. In: CVPR, pp. 2805–2811 (2009)Google Scholar
  16. 16.
    Chung, H.: Efficient photometric stereo on glossy surfaces with wide specular lobes. In: CVPR (2008)Google Scholar
  17. 17.
    Gautron, P., Krivanek, J., Pattanaik, S.: A novel hemispherical basis for accurate and efficient rendering. In: Eurographics Symposium on Rendering (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Tingdahl
    • 1
  • Christoph Godau
    • 2
  • Luc Van Gool
    • 1
  1. 1.ESAT/IBBT/VISICSKatholieke Universiteit LeuvenBelgium
  2. 2.Technische Universität Darmstadt, IDDGermany

Personalised recommendations