Estimating Surface Normals from Spherical Stokes Reflectance Fields

  • Giuseppe Claudio Guarnera
  • Pieter Peers
  • Paul Debevec
  • Abhijeet Ghosh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)


In this paper we introduce a novel technique for estimating surface normals from the four Stokes polarization parameters of specularly reflected light under a single spherical incident lighting condition that is either unpolarized or circularly polarized. We illustrate the practicality of our technique by estimating surface normals under uncontrolled outdoor illumination from just four observations from a fixed viewpoint.


Incident Lighting Circular Polarization Stokes Parameter Photometric Stereo Stokes Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolff, L.B., Boult, T.E.: Constraining object features using a polarization reflectance model. PAMI 13, 635–657 (1991)CrossRefGoogle Scholar
  2. 2.
    Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Rendering Techniques, pp. 183–194 (2007)Google Scholar
  3. 3.
    Nayar, S., Fang, X., Boult, T.: Removal of Specularities using Color and Polarization. In: CVPR (1993)Google Scholar
  4. 4.
    Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., Debevec, P.: Multiview face capture using polarized spherical gradient illumination. In: Proceedings of the 2011 SIGGRAPH Asia Conference, SA 2011, pp. 129:1–129:10. ACM, New York (2011)Google Scholar
  5. 5.
    Tominaga, S., Yamamoto, T.: Metal-dielectric object classification by polarization degree map. In: CVPR, pp. 1–4 (2008)Google Scholar
  6. 6.
    Ghosh, A., Chen, T., Peers, P., Wilson, C.A., Debevec, P.: Circularly polarized spherical illumination reflectometry. ACM Trans. Graph. 29, 162:1–162:12 (2010)Google Scholar
  7. 7.
    Cula, O.G., Dana, K.J., Pai, D.K., Wang, D.: Polarization multiplexing and demultiplexing for appearance-based modeling. PAMI 29, 362–367 (2007)CrossRefGoogle Scholar
  8. 8.
    Wolff, L.B., Lundberg, A., Tang, R.: Image understanding from thermal emission polarization. In: CVPR, p. 625. IEEE Computer Society, Washington, DC (1998)Google Scholar
  9. 9.
    Miyazaki, D., Ikeuchi, K.: Inverse polarization raytracing: Estimating surface shapes of transparent objects. In: CVPR, pp. 910–917 (2005)Google Scholar
  10. 10.
    Koshikawa, K.: A polarimetric approach to shape understanding of glossy objects, 190–192 (1992)Google Scholar
  11. 11.
    Atkinson, G.A., Hancock, E.R.: Shape estimation using polarization and shading from two views. PAMI 29, 2001–2017 (2007)CrossRefGoogle Scholar
  12. 12.
    Saito, M., Sato, Y., Ikeuchi, K., Kashiwagi, H.: Measurement of surface orientations of transparent objects by use of polarization in highlight. J. Opt. Soc. Am. A 16, 2286–2293 (1999)CrossRefGoogle Scholar
  13. 13.
    Woodham, R.J.: Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In: Proc. SPIE’s 22nd Annual Technical Symposium, vol. 155 (1978)Google Scholar
  14. 14.
    Basri, R., Jacobs, D.W.: Photometric stereo with general, unknown lighting. In: CVPR, pp. 374–381 (2001)Google Scholar
  15. 15.
    Roth, S., Black, M.J.: Specular flow and the recovery of surface structure. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1869–1876 (2006)Google Scholar
  16. 16.
    Vasilyev, Y., Zickler, T., Gortler, S., Ben-Shahar, O.: Shape from specular flow: Is one flow enough?, pp. 2561–2568 (2011)Google Scholar
  17. 17.
    Rahmann, S., Canterakis, N.: Reconstruction of specular surfaces using polarization imaging. In: CVRP, vol. 1, p. 149 (2001)Google Scholar
  18. 18.
    Atkinson, G.A., Hancock, E.R.: Multi-view surface reconstruction using polarization. In: ICCV, pp. 309–316 (2005)Google Scholar
  19. 19.
    Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Transparent surface modeling from a pair of polarization images. PAMI 26, 73–82 (2004)CrossRefGoogle Scholar
  20. 20.
    Wolff, L.B.: Surface orientation from two camera stereo with polarizers. In: Proc. SPIE Conf. Optics, Illumination and Image Sensing for Machine Vision IV, vol. 1194, pp. 287–297 (1989)Google Scholar
  21. 21.
    Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Polarization-based transparent surface modeling from two views. In: ICCV, p. 1381 (2003)Google Scholar
  22. 22.
    Atkinson, G.A., Hancock, E.R.: Two-dimensional brdf estimation from polarisation. Comput. Vis. Image Underst. 111, 126–141 (2008)CrossRefGoogle Scholar
  23. 23.
    Miyazaki, D., Ikeuchi, K.: Shape estimation of transparent objects by using inverse polarization ray tracing. PAMI 29, 2018–2030 (2007)CrossRefGoogle Scholar
  24. 24.
    Collett, E.: Field Guide to Polarization, SPIE Field Guides, vol. FG05. SPIE (2005)Google Scholar
  25. 25.
    Bohren, C., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley Science Paperback Series (1998)Google Scholar
  26. 26.
    Tuchin, V.V.: Light scattering study of tissues. Physics-Uspekhi 40, 495 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Claudio Guarnera
    • 1
  • Pieter Peers
    • 2
  • Paul Debevec
    • 1
  • Abhijeet Ghosh
    • 1
  1. 1.USC Institute for Creative TechnologiesPlaya VistaUSA
  2. 2.The College of William & MaryWilliamsburgUSA

Personalised recommendations