Exploiting Perception for Face Analysis: Image Abstraction for Head Pose Estimation

  • Anant Vidur Puri
  • Brejesh Lall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)


We present an algorithm to estimate the pose of a human head from a single, low resolution image in real time. It builds on the fundamentals of human perception i.e. abstracting the relevant details from visual cues. Most images contain far too many cues than what are required for estimating human head pose. Thus, we use non-photorealistic rendering to eliminate irrelevant details like expressions from the picture and accentuate facial features critical to estimating head pose. The maximum likelihood pose range is then estimated by training a classifier on scaled down abstracted images. The results are extremely encouraging especially when compared with other recent methods.Moreover the algorithm is robust to illumination, expression, identity and resolution.


Face Head Pose Non Photorealistic Rendering Abstraction 


  1. 1.
    Murphy-Chutorian, E., Trivedi, M.: Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 607–626 (2009)CrossRefGoogle Scholar
  2. 2.
    Cai, Q., Sankaranarayanan, A., Zhang, Q., Zhang, Z., Liu, Z.: Real time head pose tracking from multiple cameras with a generic model. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 25–32 (2010)Google Scholar
  3. 3.
    Saragih, J., Lucey, S., Cohn, J.: Face alignment through subspace constrained mean-shifts. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1034–1041 (2009)Google Scholar
  4. 4.
    Huang, D., Storer, M., De la Torre, F., Bischof, H.: Supervised local subspace learning for continuous head pose estimation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2928 (2011)Google Scholar
  5. 5.
    Fu, Y., Huang, T.: Graph embedded analysis for head pose estimation. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 3–8 (2006)Google Scholar
  6. 6.
    Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh, M.: How well do line drawings depict shape? In: ACM SIGGRAPH 2009 papers, SIGGRAPH 2009, pp. 28:1–28:9. ACM, New York (2009)Google Scholar
  7. 7.
    Ryan, T.A., Schwartz, C.B.: Speed of perception as a function of mode of representation. American Journal of Psychology 69, 60–69 (1956)CrossRefGoogle Scholar
  8. 8.
    Cavanagh, P.: Vision is getting easier everyday. Perception 24, 1227–1232 (1995)Google Scholar
  9. 9.
    Winnemöller, H., Feng, D., Gooch, B., Suzuki, S.: Using npr to evaluate perceptual shape cues in dynamic environments. In: Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering, NPAR 2007, pp. 85–92. ACM, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Zeki, S.: A vision of the brain. Blackwell Scientific Publications, Oxford (1993)Google Scholar
  11. 11.
    Strothotte, T., Schlechtweg, S.: Non-photorealistic computer graphics: Modeling, rendering, and animation. Morgan Kaufmann (2002)Google Scholar
  12. 12.
    DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002, pp. 769–776. ACM, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: Proceedings of Pointing, ICPR, International Workshop on Visual Observation of Deictic Gestures, vol. 1, pp. 617–622 (2004)Google Scholar
  14. 14.
    Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)CrossRefGoogle Scholar
  15. 15.
    Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In: Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 232–237 (1998)Google Scholar
  16. 16.
    Wu, Y., Toyama, K.: Wide-range, person- and illumination-insensitive head orientation estimation. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 183–188 (2000)Google Scholar
  17. 17.
    Tu, J., Fu, Y., Hu, Y., Huang, T.: Evaluation of Head Pose Estimation for Studio Data. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 281–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Gourier, N., Maisonnasse, J., Hall, D., Crowley, J.L.: Head Pose Estimation on Low Resolution Images. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 270–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Dahmane, M., Meunier, J.: Object representation based on gabor wave vector binning: An application to human head pose detection. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2198–2204 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anant Vidur Puri
    • 1
  • Brejesh Lall
    • 1
  1. 1.Indian Institute of TechnologyNew DelhiIndia

Personalised recommendations