Wehrli 2.0: An Algorithm for “Tidying up Art”

  • Nikolai Ufer
  • Mohamed Souiai
  • Daniel Cremers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)


We propose an algorithm for automatizing the task of “Tidying up Art” introduced by the comedian Wehrli [1]. Driven by a strong sense of order and tidyness, Wehrli systematically dissects famous artworks into their constituents and rearranges them according to certain ordering principles. The proposed algorithmic solution to this problem builds up on a number of recent advances in image segmentation and grouping. It has two important advantages: Firstly, the computerized tidying up of art is substantially faster than manual labor requiring only a few seconds on state-of-the-art GPUs compared to many hours of manual labor. Secondly, the computed part decomposition and reordering is fully reproducible. In particular, the arrangement of parts is determined based on mathematically transparent criteria rather than the invariably subjective and irreproducible human sense of order.


Tidying up Art Image Segmentation Label Cost Prior Convex Relaxation Convex Optimization Fast Global K-Means 


  1. 1.
    Wehrli, U., Olenhusen, A.: Kunst aufräumen. Kein & Aber (2002)Google Scholar
  2. 2.
    Wehrli, U., Olenhusen, A.: Noch mehr Kunst aufräumen. Kein & Aber (2006)Google Scholar
  3. 3.
    Wehrli, U., Born, G., Spehr, D.: Die Kunst, aufzuräumen. Kein & Aber (2011)Google Scholar
  4. 4.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press (1987)Google Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  7. 7.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  8. 8.
    Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical report TR-2008-05, Departement of Computer Science, University of Bonn, Bonn, Germany (2008)Google Scholar
  9. 9.
    Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex Multi-class Image Labeling by Simplex-Constrained Total Variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop (VMV), Konstanz, Germany, pp. 243–252 (2008)Google Scholar
  11. 11.
    Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An Experimental Comparison of Discrete and Continuous Shape Optimization Methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 332–345. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multi-band image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 884–900 (1996)CrossRefGoogle Scholar
  13. 13.
    Leclerc, Y.G.: Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision 3, 73–102 (1989)CrossRefGoogle Scholar
  14. 14.
    Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Pattern Recognition 36, 451–461 (2003)CrossRefGoogle Scholar
  16. 16.
    Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. International Journal of Computer Vision 96, 1–27 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida, pp. 810–817 (2009)Google Scholar
  18. 18.
    Yuan, J., Boykov, Y.: TV-based multi-label image segmentation with label cost prior. In: Proceedings of the British Machine Vision Conference (BMVC), Aberystwyth, UK, pp. 101.1–101.12 (2010)Google Scholar
  19. 19.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 1133–1140 (2009)Google Scholar
  20. 20.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nikolai Ufer
    • 1
    • 2
  • Mohamed Souiai
    • 1
  • Daniel Cremers
    • 1
  1. 1.Department of Computer ScienceTechnical University of MunichGarchingGermany
  2. 2.Department of MathematicsUniversity of MunichMunichGermany

Personalised recommendations