Wehrli 2.0: An Algorithm for “Tidying up Art”
Abstract
We propose an algorithm for automatizing the task of “Tidying up Art” introduced by the comedian Wehrli [1]. Driven by a strong sense of order and tidyness, Wehrli systematically dissects famous artworks into their constituents and rearranges them according to certain ordering principles. The proposed algorithmic solution to this problem builds up on a number of recent advances in image segmentation and grouping. It has two important advantages: Firstly, the computerized tidying up of art is substantially faster than manual labor requiring only a few seconds on state-of-the-art GPUs compared to many hours of manual labor. Secondly, the computed part decomposition and reordering is fully reproducible. In particular, the arrangement of parts is determined based on mathematically transparent criteria rather than the invariably subjective and irreproducible human sense of order.
Keywords
Tidying up Art Image Segmentation Label Cost Prior Convex Relaxation Convex Optimization Fast Global K-MeansReferences
- 1.Wehrli, U., Olenhusen, A.: Kunst aufräumen. Kein & Aber (2002)Google Scholar
- 2.Wehrli, U., Olenhusen, A.: Noch mehr Kunst aufräumen. Kein & Aber (2006)Google Scholar
- 3.Wehrli, U., Born, G., Spehr, D.: Die Kunst, aufzuräumen. Kein & Aber (2011)Google Scholar
- 4.Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press (1987)Google Scholar
- 6.Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
- 7.Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
- 8.Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical report TR-2008-05, Departement of Computer Science, University of Bonn, Bonn, Germany (2008)Google Scholar
- 9.Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex Multi-class Image Labeling by Simplex-Constrained Total Variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 10.Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop (VMV), Konstanz, Germany, pp. 243–252 (2008)Google Scholar
- 11.Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An Experimental Comparison of Discrete and Continuous Shape Optimization Methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 332–345. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 12.Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multi-band image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 884–900 (1996)CrossRefGoogle Scholar
- 13.Leclerc, Y.G.: Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision 3, 73–102 (1989)CrossRefGoogle Scholar
- 14.Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Pattern Recognition 36, 451–461 (2003)CrossRefGoogle Scholar
- 16.Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. International Journal of Computer Vision 96, 1–27 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida, pp. 810–817 (2009)Google Scholar
- 18.Yuan, J., Boykov, Y.: TV-based multi-label image segmentation with label cost prior. In: Proceedings of the British Machine Vision Conference (BMVC), Aberystwyth, UK, pp. 101.1–101.12 (2010)Google Scholar
- 19.Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 1133–1140 (2009)Google Scholar
- 20.Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 120–145 (2011)MathSciNetCrossRefGoogle Scholar