Reading Out the Synaptic Echoes of Low-Level Perception in V1

  • Yves Frégnac
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)


Primary visual cortex (V1) in the mammalian brain computes on the fly perceptual primitives (form, motion, visual flow) from the feedforward bombardment of retinal events channeled through the thalamus. At the same time, it integrates the distributed feedback of higher cortical areas involved in more elaborate cognitive functions. The reverberating activity evoked by the interplay between these two streams has been hypothesized to form the trace of the low-level computational operations written on the “high resolution buffer” of primary cortical areas [1]. In vivo intracellular electrophysiology in V1 offers the unique possibility of listening to the synaptic echoes of the effective perceptual network at work. On the basis of the comparison between functional synaptic imaging and voltage sensitive dye imaging, I will show that the emergence of macroscopic features of perception (Gestalt and motion flow related percepts) in early sensory cortical areas can be predicted from the read-out of analog graded events (synaptic potentials) operating at a more microscopic integration level.


Visual Cortex Receptive Field Apparent Motion Primary Visual Cortex Gabor Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mumford, D.: On the computational architecture of the neocortex. II. The role of corticocortical loops. Biol. Cybern. 66, 241–251 (1992)CrossRefGoogle Scholar
  2. 2.
    Carandini, M., Demb, J.B., Mante, V., Olshausen, R.A., Tolhurst, D.J., Dan, Y., Gallant, J.L., Rust, N.: Do we know what the early visual system does? J. Neurosci. 25, 10577–10597 (2005)CrossRefGoogle Scholar
  3. 3.
    Gilbert, C., Das, A., Ito, M., Kapadia, M., Westheimer, G.: Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615–622 (1996)CrossRefGoogle Scholar
  4. 4.
    Séries, P., Lorenceau, J., Frégnac, Y.: The silent surround of V1 receptive fields: theory and experiments. Journal of Physiology 97(4-6), 453–474 (2003)Google Scholar
  5. 5.
    Grinvald, A., Hildesheim, R.: VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5(11), 874–885 (2004)CrossRefGoogle Scholar
  6. 6.
    Chavane, F., Sharon, D., Jancke, D., Marre, O., Frégnac, Y., Grinvald, A.: Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Front. System Neuroscience 5(4), 1–26 (2011), doi:10.3389/fnsys.2011.00004.Google Scholar
  7. 7.
    Frégnac, Y., Bringuier, V.: Spatio-temporal dynamics of synaptic integration in cat visual cortical receptive fields. In: Aertsen, A., Braitenberg, V. (eds.) Brain Theory: Biological Basis and Computational Theory of Vision, pp. 143–199. Springer, Amsterdam (1996)Google Scholar
  8. 8.
    Bringuier, V., Chavane, F., Glaeser, L., Frégnac, Y.: Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695–699 (1999)CrossRefGoogle Scholar
  9. 9.
    Fink, M.M.: Time reversal in acoustics. Contemporary Physics 37, 95–109 (1996) 1366-5812CrossRefGoogle Scholar
  10. 10.
    Frégnac, Y., Baudot, P., Chavane, F., Lorenceau, J., Marre, O., Monier, C., Pananceau, M., Carelli, P., Sadoc, G.: Multiscale functional imaging in V1 and cortical correlates of apparent motion. In: Masson, G., Ilg, U. (eds.) Dynamics of Visual Motion Processing, pp. 73–94. Springer (2010)Google Scholar
  11. 11.
    Albus, K.: A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp. Brain Res. 24, 159–179 (1975)CrossRefGoogle Scholar
  12. 12.
    Tootell, R.B., Silverman, M.S., Switkes, E., De Valois, R.L.: Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218, 902–904 (1982)CrossRefGoogle Scholar
  13. 13.
    Kalatsky, V.A., Stryker, M.P.: New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38(4), 529–545 (2003)CrossRefGoogle Scholar
  14. 14.
    Basole, A., White, L.E., Fitzpatrick, D.: Mapping multiple features in the population response of visual cortex. Nature 423, 986–990 (2003)CrossRefGoogle Scholar
  15. 15.
    Warnking, J., Dojat, M., Guerin-Dugue, A., Delon-Martin, C., Olympieff, S., Richard, N., Chehikian, A., Segebarth, C.: FMRI retinotopic mapping-step by step. Neuroimage 17, 1665–1683 (2002)CrossRefGoogle Scholar
  16. 16.
    Mitchison, G., Crick, F.: Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Proc. Natl. Acad. Sci. U S A. 79, 3661–3665 (1982)CrossRefGoogle Scholar
  17. 17.
    Schwartz, E.L.: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol. Cybern. 25, 181–194 (1977)CrossRefGoogle Scholar
  18. 18.
    Moore, C.I., Nelson, S.B.: Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J.Neurophysiol. 80, 2882–2892 (1998)Google Scholar
  19. 19.
    Nowak, L.G., Bullier, J.: The timing of information transfer in the visual system. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds.) Extrastriate Visual Cortex in Primates, pp. 205–241. Plenum Press, New York (1997)Google Scholar
  20. 20.
    Hoffman, K.P., Stone, J.: Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32, 460–466 (1971)CrossRefGoogle Scholar
  21. 21.
    Hirsch, J.A., Gilbert, C.D.: Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Neurosci. 11, 1800–1809 (1991)Google Scholar
  22. 22.
    Nauhaus, I., Busse, L., Carandini, M., Ringach, D.L.: Stimulus contrast modulates functional connectivity in visual cortex. Nature Neurosci. 12, 70–76 (2009)CrossRefGoogle Scholar
  23. 23.
    Shoham, D., Glaser, D.E., Arieli, A., Kenet, T., Wijnbergen, C., Toledo, Y., Hildesheim, R., Grinvald, A.: Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24(4), 791–802 (1999)CrossRefGoogle Scholar
  24. 24.
    Roland, P.E.: Dynamic depolarisation fields in the cerebral cortex. Trends Neurosci. 25, 183–190 (2002)CrossRefGoogle Scholar
  25. 25.
    Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R.: Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14, 2545–2568 (1994)Google Scholar
  26. 26.
    Jancke, D., Chavane, F., Naaman, S., Grinvald, A.: Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426 (2004)CrossRefGoogle Scholar
  27. 27.
    Xu, W., Huang, X., Takagaki, K., Wu, J.Y.: Compression and reflection of visually evoked cortical waves. Neuron 55(1), 119–129 (2007)CrossRefGoogle Scholar
  28. 28.
    Roland, P.E., Hanazawa, A., Undeman, C., Eriksson, D., Tompa, T., Nakamura, H., Valentiniene, S., Ahmed, B.: Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc. Natl. Acad. Sci. USA 103(33), 12586–12591 (2006)CrossRefGoogle Scholar
  29. 29.
    Ahmed, B., Hanazawa, A., Undeman, C., Eriksson, D., Valentiniene, S., Roland, P.E.: Cortical dynamics subserving visual apparent motion. Cerebral Cortex 18(12), 2796–2810 (2008)CrossRefGoogle Scholar
  30. 30.
    Benucci, A., Frazor, R.A., Carandini, M.: Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1), 103–117 (2007)CrossRefGoogle Scholar
  31. 31.
    Frégnac, Y.R., Blatow, M., Changeux, J.P., DeFelipe, J., Markram, H., Lansner, A., Maass, W., Markram, H., McCormick, D., Michel, C.M., Monyer, H., Szathmáry, E., Yuste, R.: Ups and downs in the genesis of cortical computation. In: Grillner, S., et al. (eds.) Microcircuits: The Interface between Neurons and Global Brain Function Microcircuits: Dahlem Workshop Report 93, pp. 397–437. The MIT Press, Cambridge (2006)Google Scholar
  32. 32.
    Tanifuji, M., Sugiyama, T., Murase, K.: Horizontal propagation of excitation in rat visual cortical slices revealed by optical imaging. Science 266(5187), 1057–1059 (1994)CrossRefGoogle Scholar
  33. 33.
    Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N.: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986)Google Scholar
  34. 34.
    Wertheimer, M.: Experimentelle Studien über das Sehen von Beuegung. Zeitschrift für Psychologie und Physiologie der Sinnesorgane 61, 161–265 (1912)Google Scholar
  35. 35.
    Koffka, K.: Principles of Gestalt Psychology. Harcourt Brace Javanovich, NewYork (1935)Google Scholar
  36. 36.
    Sèries, P., Georges, S., Lorenceau, J., Frégnac, Y.: Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex. Vision Res. 42, 2781–2797 (2002)CrossRefGoogle Scholar
  37. 37.
    Georges, S., Sèries, P., Frégnac, Y., Lorenceau, J.: Orientation dependent modulation of apparent speed: psychophysical evidence. Vision Res. 42, 2757–2772 (2002)CrossRefGoogle Scholar
  38. 38.
    Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local “association field”. Vision Res. 33, 173–193 (1993)CrossRefGoogle Scholar
  39. 39.
    Hess, R., Field, D.: Integration of contours: new insights. Trends in Cognitive Sciences 3(12), 480–486 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yves Frégnac
    • 1
  1. 1.UNIC-CNRSGif-sur-YvetteFrance

Personalised recommendations