Advertisement

Statistical Shape Analysis for Population Studies via Level-Set Based Shape Morphing

  • Tammy Riklin Raviv
  • Yi Gao
  • James J. Levitt
  • Sylvain Bouix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)

Abstract

We present a method that allows the detection, localization and quantification of statistically significant morphological differences in complex brain structures between populations. This is accomplished by a novel level-set framework for shape morphing and a multi-shape dissimilarity-measure derived by a modified version of the Hausdorff distance. The proposed method does not require explicit one-to-one point correspondences and is fast, robust and easy to implement regardless of the topological complexity of the anatomical surface under study.

The proposed model has been applied to different populations using a variety of brain structures including left and right striatum, caudate, amygdala-hippocampal complex and superior- temporal gyrus (STG) in normal controls and patients. The synthetic databases allow quantitative evaluations of the proposed algorithm while the results obtained for the real clinical data are in line with published findings on gray matter reduction in the tested cortical and sub-cortical structures in schizophrenia patients.

Keywords

Caudate Nucleus Schizophrenia Patient Signed Distance Function Medical Image Analysis Schizotypal Personality Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cates, J.E., Fletcher, P.T., Styner, M.A., Hazlett, H.C., Whitaker, R.T.: Particle-Based Shape Analysis of Multi-object Complexes. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 477–485. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, T., Vemuri, B., Rangarajan, A., Eisenschenk, S.: Group-wise point-set registration using a novel cdf-based havrda-charvt divergence. International Journal of Computer Vision 86, 111–124 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans. Med. Imaging 30, 849–858 (2011)CrossRefGoogle Scholar
  4. 4.
    Shen, L., Farid, H., McPeek, M.A.: Modeling 3-dimensional morphological structures using spherical harmonics. Evolution 63, 1003–1016 (2009)CrossRefGoogle Scholar
  5. 5.
    Styner, M., Lieberman, J., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Medical Image Analysis, 197–203 (2004)Google Scholar
  6. 6.
    Thompson, P., et al.: Mapping hippocampal and ventricular change in alzheimer disease. NeuroImage 22, 1754–1766 (2004)CrossRefGoogle Scholar
  7. 7.
    Styner, M., et al.: Statistical shape analysis of neuroanatomical structures based on medial models. Medical Image Analysis 7, 207–220 (2003)CrossRefGoogle Scholar
  8. 8.
    Yushkevich, P.A., Zhang, H., Gee, J.C.: Continuous medial representation for anatomical structures. Medical Image Analysis 25, 1547–1564 (2006)Google Scholar
  9. 9.
    Mangin, J., et al.: Brain morphometry using 3D moment invariants. Medical Image Analysis 8, 187–196 (2004)CrossRefGoogle Scholar
  10. 10.
    Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching. In: ICPR, vol. 1, pp. 566–568 (1994)Google Scholar
  12. 12.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision 89, 266–286 (2010)CrossRefGoogle Scholar
  14. 14.
    Charpiat, G., Faugeras, O., Keriven, R., Maurel, P.: Statistics and Analysis of Shapes: Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics. Krim, H., Yezzi Jr., A. (eds.) (2006)Google Scholar
  15. 15.
    Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–347 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nichols, T., Hayasaka, S.: Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat. Meth. Med. Research 12, 419–446 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry – the methods. NeuroImage 11, 805–821 (2000)CrossRefGoogle Scholar
  18. 18.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143–156 (2001)CrossRefGoogle Scholar
  19. 19.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Pohl, K., et al.: Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis 11, 465–477 (2007)CrossRefGoogle Scholar
  21. 21.
    Sabuncu, M.R., Yeo, B.T.T., Van Leemput, K., Vercauteren, T., Golland, P.: Asymmetric Image-Template Registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 565–573. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Gao, Y., Bouix, S.: Synthesis of realistic subcortical anatomy with known surface deformations. In: MICCAI Workshop on Mesh Processing in Medical Image Analysis (October 2012)Google Scholar
  23. 23.
    Hirayasu, Y., et al.: Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Amer. J. Psychiatry 155, 1384–1391 (1998)Google Scholar
  24. 24.
    Shenton, et al.: A review of MRI findings in schizophrenia. Schizophrenia Research 49, 1–52 (2001)CrossRefGoogle Scholar
  25. 25.
    Levitt, et al.: Shape abnormalities of caudate nucleus in schizotypal personality disorder. Schizophr Res. 110, 127–139 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tammy Riklin Raviv
    • 1
  • Yi Gao
    • 1
  • James J. Levitt
    • 1
  • Sylvain Bouix
    • 1
  1. 1.Psychiatry and Neuroimaging LaboratoryBrigram and Women Hospital, Harvard Medical SchoolUSA

Personalised recommendations