Identity Inference: Generalizing Person Re-identification Scenarios

  • Svebor Karaman
  • Andrew D. Bagdanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)


In this article we introduce the problem of identity inference as a generalization of the re-identification problem. Identity inference is applicable in situations where a large number of unknown persons must be identified without knowing a priori that groups of test images represent the same individual. Standard single- and multi-shot person re-identification are special cases of our formulation. We present an approach to solving identity inference problems using a Conditional Random Field (CRF) to model identity inference as a labeling problem in the CRF. The CRF model ensures that the final labeling gives similar labels to detections that are similar in feature space, and is flexible enough to incorporate constraints in the temporal and spatial domains. Experimental results are given on the ETHZ dataset. Our approach yields state-of-the-art performance for the multi-shot re-identification task and promising results for more general identity inference problems.


Test Image Spatial Pyramid Label Problem Gallery Image Unlabeled Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartz, W., Davis, L.: Learning discriminative appearance-based models using partial least squares. In: Proceedings of SIBGRAPI, pp. 322–329. IEEE (2009)Google Scholar
  2. 2.
    Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Multiple-shot human re-identification by mean riemannian covariance grid. In: Proceedings of AVSS, pp. 179–184 (2011)Google Scholar
  4. 4.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of CVPR, pp. 2360–2367 (2010)Google Scholar
  5. 5.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: Procedings of BMVC (2011)Google Scholar
  6. 6.
    Cai, Y., Pietikäinen, M.: Person Re-identification Based on Global Color Context. In: Koch, R., Huang, F. (eds.) ACCV 2010 Workshops, Part I. LNCS, vol. 6468, pp. 205–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Prosser, B., Zheng, W.-S., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: Proceedings of BMVC (2010)Google Scholar
  8. 8.
    Yang, B., Nevatia, R.: An online learned crf model for multi-target tracking. In: Proceedings of CVPR (2012)Google Scholar
  9. 9.
    Boix, X., Gonfaus, J., van de Weijer, J., Bagdanov, A., Serrat, J., Gonzàlez, J.: Harmony potentials. International Journal of Computer Vision, 1–20 (2012)Google Scholar
  10. 10.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47, 7–42 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 147–159 (2004)CrossRefGoogle Scholar
  12. 12.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1068–1080 (2008)CrossRefGoogle Scholar
  13. 13.
    van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of CVPR, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  15. 15.
    Bazzani, L., Cristani, M., Perina, A., Murino, V.: Multiple-shot person reidentification by chromatic and epitomic analyses. Pattern Recognition Letters (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Svebor Karaman
    • 1
  • Andrew D. Bagdanov
    • 1
  1. 1.Media Integration and Communication CenterUniversity of FlorenceFlorenceItaly

Personalised recommendations