Advertisement

3D Object Classification Using Scale Invariant Heat Kernels with Collaborative Classification

  • Mostafa Abdelrahman
  • Moumen El-Melegy
  • Aly Farag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)

Abstract

One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This paper proposes an approach for shape matching and retrieval based on scale-invariant heat kernel (HK). The approach uses a novel descriptor based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. We propose an improved method to introduce scale-invariance of HK to avoid noise-sensitive operations in the original method. A collaborative classification (CC) scheme is then employed for object classification. For comparison we compare our approach to well-known approaches on a standard benchmark dataset: the SHREC 2011. The results have indeed confirmed the high performance of the proposed approach on the shape retrieval problem.

Keywords

Heat kernels shape retrieval collaborative classification 3D shape descriptors 

References

  1. 1.
    Raviv, D., et al.: Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In: Proc. Computer Vision and Pattern Recognition, CVPR (2011)Google Scholar
  2. 2.
    Kazhdan, M., et al.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. SGP, pp. 156–164 (2003)Google Scholar
  3. 3.
    Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proc. CVPR, pp. 168–174 (2001)Google Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Analysis of two-dimensional non-rigid shapes. IJCV (2008)Google Scholar
  5. 5.
    Reuter, M., et al.: Discrete Laplace-Beltrami operators for shape analysis and segmentation. Computers and Graphics 33(3), 381–390 (2009)CrossRefGoogle Scholar
  6. 6.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Computer-Aided Design 38(4), 342–366 (2006)CrossRefGoogle Scholar
  7. 7.
    Bronstein, M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: IEEE Computer vision and pattern recognition (CVPR), pp. 1704–1711 (2010)Google Scholar
  8. 8.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: SGP 2009: Proceedings of the Symposium on Geometry Processing, pp. 1383–1392 (2009)Google Scholar
  9. 9.
    Fang, Y., Sun, M., Ramani, K.: Temperature Distribution Descriptor for Robust 3D Shape Retrieval. In, NORDIA 2011 (2011) (CVPRW)Google Scholar
  10. 10.
    Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3 d scenes. Trans. PAMI 21(5), 433–449 (1999)CrossRefGoogle Scholar
  11. 11.
    Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proc. Eurographics Workshop on 3D Object Retrieval (2009)Google Scholar
  12. 12.
    Ben-Chen, M., Weber, O., Gotsman, C.: Characterizing shape using conformal factors. In: Proc. Eurographics Workshop on Shape Retrieval (2008)Google Scholar
  13. 13.
    Lian, Z., et al.: SHREC 2011 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on 3D Object Retrieval (2011)Google Scholar
  14. 14.
    Grinspun, E., Gingold, Y., Reisman, J., Zorin, D.: Computing discrete shape operators on general meshes. [Eurographics (2006) Best Paper, 3rd Place]. Eurographics (Computer Graphics Forum) 25(3), 547–556 (2006)Google Scholar
  15. 15.
    Wardetzky, M., Mathur, S., Kalberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Conf. Comp. Grap. and Interactive Techniques (2008)Google Scholar
  16. 16.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proc. SMI 2004, pp. 167–178 (2004)Google Scholar
  17. 17.
    Bronstein, A.M., Bronstein, M.M., Ovsjanikov, M., Guibas, L.J.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graphics (TOG) 30(1), 1–20 (2011)CrossRefGoogle Scholar
  18. 18.
    Abdelrahman, M., El-Melegy, M.T., Farag, A.A.: Heat Kernels for Non-Rigid Shape Retrieval: Sparse Representation and Efficient Classification. In: CRV, pp. 153–160 (2012)Google Scholar
  19. 19.
    Reuter, M.: Hierarchical shape segmentation and registration via topological features of laplace-beltrami eigenfunctions. Proc. IJCV 89(2), 287–308 (2010)CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Yang, M., Feng, X.: Sparse Representation or Collaborative Representation: Which Helps Face Recognition? In: ICCV (2011)Google Scholar
  21. 21.
    Yang, M., Zhang, L., Zhang, D., Wang, S.: Relaxed Collaborative Representation for Pattern Classification. In: CVPR (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mostafa Abdelrahman
    • 1
  • Moumen El-Melegy
    • 1
    • 2
  • Aly Farag
    • 1
  1. 1.Computer Vision and Image Processing LaboratoryUniversity of LouisvilleLouisvilleUSA
  2. 2.Electrical Engineering DepartmentAssiut UniversityAssiutEgypt

Personalised recommendations