Schrödinger Diffusion for Shape Analysis with Texture

  • Jose A. Iglesias
  • Ron Kimmel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)


In recent years, quantities derived from the heat equation have become popular in shape processing and analysis of triangulated surfaces. Such measures are often robust with respect to different kinds of perturbations, including near-isometries, topological noise and partialities. Here, we propose to exploit the semigroup of a Schrödinger operator in order to deal with texture data, while maintaining the desirable properties of the heat kernel. We define a family of Schrödinger diffusion distances analogous to the ones associated to the heat kernels, and show that they are continuous under perturbations of the data. As an application, we introduce a method for retrieval of textured shapes through comparison of Schrödinger diffusion distance histograms with the earth’s mover distance, and present some numerical experiments showing superior performance compared to an analogous method that ignores the texture.


Laplace-Beltrami operator textured shape retrieval diffusion distance Schrödinger operators earth mover’s distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sorkine, O.: Laplacian mesh processing. In: Eurographics, pp. 53–70 (2005)Google Scholar
  2. 2.
    Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: SGP, pp. 225–233 (2007)Google Scholar
  3. 3.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: SGP, pp. 1383–1392 (2009)Google Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: Geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–1 (2011)CrossRefGoogle Scholar
  5. 5.
    Bronstein, M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: CVPR, pp. 1704–1711 (2010)Google Scholar
  6. 6.
    Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bronstein, M., Bronstein, A.: Shape recognition with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1065–1071 (2011)CrossRefGoogle Scholar
  8. 8.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vision 89, 266–286 (2010)CrossRefGoogle Scholar
  9. 9.
    Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Photometric Heat Kernel Signatures. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 616–627. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Processing 7, 310–318 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jost, J.: Riemannian geometry and geometric analysis, 5th edn. Springer (2008)Google Scholar
  12. 12.
    Grigoryan, A.: Heat kernel and analysis on manifolds. AMS (2009)Google Scholar
  13. 13.
    Katō, T.: Perturbation theory for linear operators. Springer (1995)Google Scholar
  14. 14.
    Simon, B.: Functional integration and quantum physics. AMS (2005)Google Scholar
  15. 15.
    Pinkall, U., Juni, S.D., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exper. Math. 2, 15–36 (1993)zbMATHCrossRefGoogle Scholar
  16. 16.
    Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete laplace operators: no free lunch. In: SGP, pp. 33–37 (2007)Google Scholar
  17. 17.
    Belkin, M., Sun, J., Wang, Y.: Discrete laplace operator for meshed surfaces. In: SODA, pp. 1031–1040 (2009)Google Scholar
  18. 18.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, pp. 585–591 (2001)Google Scholar
  19. 19.
    Belkin, M., Niyogi, P.: Convergence of laplacian eigenmaps. In: NIPS (2006)Google Scholar
  20. 20.
    Sethian, J.A., Vladimirsky, A.: Fast methods for the eikonal and related hamilton-jacobi equations on unstructured meshes. PNAS 97, 5699–5703 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10, 180–184 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: ICCV, pp. 59–66 (1998)Google Scholar
  23. 23.
    Ling, H., Okada, K.: EMD-L 1: An Efficient and Robust Algorithm for Comparing Histogram-Based Descriptors. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 330–343. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: ECCV, pp. 460–467 (2009)Google Scholar
  25. 25.
    Ling, H., Jacobs, D.: Using the inner-distance for classification of articulated shapes. In: CVPR, vol. 2, pp. 719–726 (2005)Google Scholar
  26. 26.
    Rabin, J., Peyré, G., Cohen, L.D.: Geodesic Shape Retrieval via Optimal Mass Transport. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 771–784. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer (2008)Google Scholar
  28. 28.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: A quantum mechanical approach to shape analysis. In: ICCV Workshops, pp. 1626–1633 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jose A. Iglesias
    • 1
  • Ron Kimmel
    • 1
  1. 1.Department of Computer ScienceTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations