Analytical Dynamic Programming Matching

  • Seiichi Uchida
  • Satoshi Hokahori
  • Yaokai Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)


In this paper, we show that the truly two-dimensional elastic image matching problem can be solved analytically using dynamic programming (DP) in polynomial time if the problem is formulated as a maximum a posteriori problem using Gaussian distributions for the likelihood and prior. After giving the derivation of the analytical DP matching algorithm, we evaluate its performance on handwritten character images containing various nonlinear deformations, and compare other elastic image matching methods.


Dynamic Time Warping Block Match Gaussian Likelihood Quadratic Nature Dynamic Programming Recursion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton University Press (1962)Google Scholar
  2. 2.
    Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. PAMI 12(9) (1990)Google Scholar
  3. 3.
    Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. PAMI 33(4) (2011)Google Scholar
  4. 4.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A Comparative Study of Energy Minimization Methods for Markov Random Fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Buchanan, A., Fitzgibbon, A.: Interactive feature tracking using K-D trees and dynamic programming. In: CVPR (2006)Google Scholar
  6. 6.
    Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: CVPR (2005)Google Scholar
  7. 7.
    Kim, J.C., Lee, K.M., Choi, B.T., Lee, S.U.: A dense stereo matching using two-pass dynamic programming with generalized ground control points. In: CVPR (2005)Google Scholar
  8. 8.
    Lei, C., Selzer, J., Yang, Y.-H.: Region-tree based stereo using dynamic programming optimization. In: CVPR, vol. 2, pp. 2378–2385 (2006)Google Scholar
  9. 9.
    Keysers, D., Deselaers, T., Gollan, C., Ney, H.: Deformation models for image recognition. PAMI 29(8) (2007)Google Scholar
  10. 10.
    Sakoe, H., Chiba, S.: A dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. ASSP 26(1) (1978)Google Scholar
  11. 11.
    Ney, H., Ortmanns, S.: Progress in dynamic programming search for LVCSR. Proc. IEEE 88(8) (2000)Google Scholar
  12. 12.
    Liu, C.-L., Jaeger, S., Nakagawa, M.: Online recognition of Chinese characters: the state-of-the-art. PAMI 26(2) (2004)Google Scholar
  13. 13.
    Levin, E., Pieraccini, R.: Dynamic planar warping for optical character recognition. In: ICASSP (1992)Google Scholar
  14. 14.
    Uchida, S., Sakoe, H.: A monotonic and continuous two-dimensional warping based on dynamic programming. In: ICPR (1998)Google Scholar
  15. 15.
    Keysers, D., Unger, W.: Elastic image matching is NP-complete. Pattern Recog. Lett. 24(1-3) (2003)Google Scholar
  16. 16.
    Mottl, V., Dvoenko, S., Kopylov, A.: Pattern recognition in interrelated data: the problem, fundamental assumptions, recognition algorithms. In: ICPR (2004)Google Scholar
  17. 17.
    Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recog. 32(1) (1999)Google Scholar
  18. 18.
    Angel, E.: Dynamic programming for noncausal problems. IEEE Trans. AC 26(5) (1981)Google Scholar
  19. 19.
    Shekhovtsov, A., Kovtun, I., Hlavac, V.: Efficient MRF deformation model for non-rigid image matching. In: CVPR (2007)Google Scholar
  20. 20.
    Serra, B., Berthod, M.: Subpixel contour matching using continuous dynamic programming. In: CVPR (1994)Google Scholar
  21. 21.
    Munich, M.E., Perona, P.: Continuous dynamic time warping for translation invariant curve alignment with applications to signature verification. In: ICCV (1999)Google Scholar
  22. 22.
    Uchida, S., Fujimura, I., Kawano, H., Feng, Y.: Analytical Dynamic Programming Tracker. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 296–309. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Angel, E., Bellman, R.: Dynamic Programming and Partial Differential Equations. Academic Press (1972)Google Scholar
  25. 25.
    Etoh, M.: Promotion of block matching: parametric representation for motion estimation. In: ICPR (1998)Google Scholar
  26. 26.
    Liu, C., Yuen, J., Torralba, A.: SIFT Flow: dense correspondence across scenes and its applications. PAMI 33(5) (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Seiichi Uchida
    • 1
  • Satoshi Hokahori
    • 1
  • Yaokai Feng
    • 1
  1. 1.Kyushu UniversityFukuokaJapan

Personalised recommendations