Putting the Pieces Together: Regularized Multi-part Shape Matching

  • Or Litany
  • Alexander M. Bronstein
  • Michael M. Bronstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)


Multi-part shape matching is an important class of problems, arising in many fields such as computational archaeology, biology, geometry processing, computer graphics and vision. In this paper, we address the problem of simultaneous matching and segmentation of multiple shapes. We assume to be given a reference shape and multiple parts partially matching the reference. Each of these parts can have additional clutter, have overlap with other parts, or there might be missing parts. We show experimental results of efficient and accurate assembly of fractured synthetic and real objects.


Iterative Close Point Data Term Partial Match Alignment Error Rigid Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics 43(8), 999–1036 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. Trans. PAMI 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Bronstein, A., Bronstein, M., Bruckstein, A., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. IJCV 84(2), 163–183 (2009)CrossRefGoogle Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M.: Not only size matters: regularized partial matching of nonrigid shapes. In: Proc. NORDIA (2008)Google Scholar
  5. 5.
    Bronstein, A.M., Bronstein, M.M.: Regularized Partial Matching of Rigid Shapes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 143–154. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proc. Conf. Robotics and Automation (1991)Google Scholar
  7. 7.
    Domokos, C., Kato, Z.: Affine Puzzle: Realigning Deformed Object Fragments without Correspondences. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 777–790. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proc. SGP (2005)Google Scholar
  9. 9.
    Hori, K., Imai, M., Ogasawara, T.: Joint detection for potsherds of broken earthenware. In: Proc. CVPR (1999)Google Scholar
  10. 10.
    Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. In: TOG, vol. 25, pp. 569–578 (2006)Google Scholar
  11. 11.
    Huber, D.F.: Automatic three-dimensional modeling from reality. PhD thesis, Carnegy Mellon University (2002)Google Scholar
  12. 12.
    Inbar, Y., Wolfson, H.J., Nussinov, R.: Multiple docking for protein structure prediction. International Journal of Robotics Research 24(2-3), 131–150 (2005)CrossRefGoogle Scholar
  13. 13.
    Kong, W., Kimia, B.B.: On solving 2d and 3d puzzles using curve matching. In: Proc. CVPR (2001)Google Scholar
  14. 14.
    Krishnan, S., Lee, P.Y., Moore, J.B., Venkatasubramanian, S.: Global registration of multiple 3d point sets via optimization-on-a-manifold. In: Proc. SGP (2005)Google Scholar
  15. 15.
    Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.J.: Registration of point cloud data from a geometric optimization perspective. In: Proc. Eurographics Symposium on Geometry Processing, pp. 23–32 (2004)Google Scholar
  16. 16.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42(5), 577–685 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Neugebauer, P.J.: Reconstruction of real-world objects via simultaneous registration and robust combination of multiple range images. International Journal of Shape Modeling 3, 71–90 (1997)CrossRefGoogle Scholar
  18. 18.
    Papaioannou, G., Karabassi, E.A.: On the automatic assemblage of arbitrary broken solid artefacts. Image and Vision Computing 21(5), 401–412 (2003)CrossRefGoogle Scholar
  19. 19.
    Papaioannou, G., Karabassi, E.A., Theoharis, T.: Virtual archaeologist: Assembling the past. Computer Graphics and Applications 21(2), 53–59 (2001)CrossRefGoogle Scholar
  20. 20.
    Pokrass, J., Bronstein, A.M., Bronstein, M.M.: A correspondence-less approach to matching of deformable shapes. In: Proc. SSVM (2012)Google Scholar
  21. 21.
    Pulli, K.: Multiview registration for large data sets. In: Prof. Conf. 3D Digital Imaging and Modeling (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Or Litany
    • 1
  • Alexander M. Bronstein
    • 1
  • Michael M. Bronstein
    • 2
  1. 1.School of Electrical EngineeringTel Aviv UniversityIsrael
  2. 2.Institute of Computational Science, Faculty of InformaticsUniversita della Svizzera ItalianaLuganoSwitzerland

Personalised recommendations