An Improved Test Generation Approach from Extended Finite State Machines Using Genetic Algorithms

  • Raluca Lefticaru
  • Florentin Ipate
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7504)

Abstract

This paper presents a new approach to test generation from extended finite state machines using genetic algorithms, by proposing a new fitness function for path data generation. The fitness function that guides the search is crucial for the success of a genetic algorithm; an improvement in the fitness function will reduce the duration of the generation process and increase the success chances of the search algorithm. The paper performs a comparison between the newly proposed fitness function and the most widely used function in the literature. The experimental results show that, for more complex paths, that can be logically decomposed into independent sub-paths, the new function outperforms the previously proposed function and the difference is statistically significant.

Keywords

fitness function state-based testing genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Generating feasible input sequences for extended finite state machines (EFSMs) using genetic algorithms. In: GECCO 2005, pp. 1081–1082. ACM (2005)Google Scholar
  2. 2.
    Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.: Aiding Test Case Generation in Temporally Constrained State Based Systems Using Genetic Algorithms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 327–334. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Derderian, K.A.: Automated Test Sequence Generation for Finite State Machines using Genetic Algorithms. Ph.D. thesis, School of Information Systems, Computing and Mathematics, Brunel University (2006)Google Scholar
  4. 4.
    Ferguson, R., Korel, B.: Software test data generation using the chaining approach. In: ITC, pp. 703–709. IEEE Computer Society (1995)Google Scholar
  5. 5.
    Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)CrossRefGoogle Scholar
  6. 6.
    Meffert, K. et al.: JGAP - Java Genetic Algorithms and Genetic Programming Package, http://jgap.sf.net
  7. 7.
    Kalaji, A., Hierons, R.M., Swift, S.: A search-based approach for automatic test generation from extended finite state machine (EFSM). In: TAIC-PART 2009, pp. 131–132. IEEE Computer Society (2009)Google Scholar
  8. 8.
    Kalaji, A., Hierons, R.M., Swift, S.: An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models. Information & Software Technology 53(12), 1297–1318 (2011)CrossRefGoogle Scholar
  9. 9.
    Kalaji, A., Hierons, R.M., Swift, S.: Generating feasible transition paths for testing from an extended finite state machine (EFSM). In: ICST 2009, pp. 230–239. IEEE Computer Society (2009)Google Scholar
  10. 10.
    Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16(8), 870–879 (1990)CrossRefGoogle Scholar
  11. 11.
    Lefticaru, R., Ipate, F.: Automatic state-based test generation using genetic algorithms. In: SYNASC 2007, pp. 188–195. IEEE Computer Society (2007)Google Scholar
  12. 12.
    Lefticaru, R., Ipate, F.: Functional search-based testing from state machines. In: ICST 2008, pp. 525–528. IEEE Computer Society (2008)Google Scholar
  13. 13.
    McMinn, P.: Search-based software test data generation: A survey. Software Testing, Verification and Reliability 14(2), 105–156 (2004)CrossRefGoogle Scholar
  14. 14.
    McMinn, P., Holcombe, M.: Hybridizing Evolutionary Testing with the Chaining Approach. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1363–1374. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Tracey, N., Clark, J., Mander, K., McDermid, J.: An automated framework for structural test-data generation. In: ASE 1998, pp. 285–288. IEEE Computer Society (1998)Google Scholar
  16. 16.
    Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic structural testing. Information & Software Technology 43(14), 841–854 (2001)CrossRefGoogle Scholar
  17. 17.
    Zhao, R., Harman, M., Li, Z.: Empirical study on the efficiency of search based test generation for EFSM models. In: ICST Workshops, pp. 222–231 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Raluca Lefticaru
    • 1
  • Florentin Ipate
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of PiteştiPiteştiRomania

Personalised recommendations