Advertisement

Frama-C

A Software Analysis Perspective
  • Pascal Cuoq
  • Florent Kirchner
  • Nikolai Kosmatov
  • Virgile Prevosto
  • Julien Signoles
  • Boris Yakobowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7504)

Abstract

Frama-C is a source code analysis platform that aims at conducting verification of industrial-size C programs. It provides its users with a collection of plug-ins that perform static analysis, deductive verification, and testing, for safety- and security-critical software. Collaborative verification across cooperating plug-ins is enabled by their integration on top of a shared kernel and datastructures, and their compliance to a common specification language. This foundational article presents a consolidated view of the platform, its main and composite analyses, and some of its industrial achievements.

Keywords

Smart Card Memory Location Theorem Prover Memory Model Abstract Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardin, S., Herrmann, P.: OSMOSE: automatic structural testing of executables. Software Testing, Verification and Reliability 21(1), 29–54 (2011)CrossRefGoogle Scholar
  2. 2.
    Bardin, S., Herrmann, P., Védrine, F.: Refinement-Based CFG Reconstruction from Unstructured Programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 54–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language Preliminary design, version 1.5 (2010), http://frama-c.com/downloads/acsl_1.5.pdf
  4. 4.
    Beckman, N., et al.: Proofs from tests. IEEE Trans. Software Eng. 36(4), 495–508 (2010)CrossRefGoogle Scholar
  5. 5.
    Berthomé, P., et al.: Attack model for verification of interval security properties for smart card c codes. In: PLAS, pp. 2:1–2:12. ACM (2010)Google Scholar
  6. 6.
    Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Botella, B., et al.: Automating structural testing of C programs: Experience with PathCrawler. In: AST, pp. 70–78 (2009)Google Scholar
  8. 8.
    Bouajjani, A., et al.: On inter-procedural analysis of programs with lists and data. In: PLDI, pp. 578–589 (2011)Google Scholar
  9. 9.
    Burdy, L., et al.: An overview of JML tools and applications. Software Tools for Technology Transfer 7(3), 212–232 (2005)CrossRefGoogle Scholar
  10. 10.
    Burstall, R.M.: Some techniques for proving correctness of programs which alter data structures. Machine Intelligence 7, 23–50 (1972)zbMATHGoogle Scholar
  11. 11.
    Ceara, D., Mounier, L., Potet, M.-L.: Taint dependency sequences: A characterization of insecure execution paths based on input-sensitive cause sequences. In: ICSTW, Washington, DC, USA, pp. 371–380 (2010)Google Scholar
  12. 12.
    Chatzieleftheriou, G., Katsaros, P.: Test-driving static analysis tools in search of C code vulnerabilities. In: COMPSAC Workshops, pp. 96–103. IEEE (2011)Google Scholar
  13. 13.
    Chebaro, O., et al.: Program slicing enhances a verification technique combining static and dynamic analysis. In: SAC (to appear, 2012)Google Scholar
  14. 14.
    Conchon, S., et al.: The Alt-Ergo Automated Theorem Prover, http://alt-ergo.lri.fr
  15. 15.
    Coq Development Team. The Coq Proof Assistant Reference Manual, v8.3 edition (2011), http://coq.inria.fr/
  16. 16.
    Correnson, L., Signoles, J.: Combining Analyses for C Program Verification. In: Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL (1977)Google Scholar
  18. 18.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Cuoq, P., et al.: Experience report: OCaml for an industrial-strength static analysis framework. In: ICFP, pp. 281–286. ACM (2009)Google Scholar
  20. 20.
    Delmas, D., et al.: Taster, a Frama-C plug-in to encode Coding Standards. In: ERTSS (May 2010)Google Scholar
  21. 21.
    Delmas, D., et al.: Fan-C, a Frama-C plug-in for data flow verification. In: ERTSS (2012)Google Scholar
  22. 22.
    Demange, D., Jensen, T., Pichardie, D.: A Provably Correct Stackless Intermediate Representation for Java Bytecode. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 97–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Demay, J.-C., Totel, E., Tronel, F.: Sidan: A tool dedicated to software instrumentation for detecting attacks on non-control-data. In: CRiSIS (October 2009)Google Scholar
  24. 24.
    Dijkstra, E.W.: A constructive approach to program correctness. BIT Numerical Mathematics. Springer (1968)Google Scholar
  25. 25.
    Dahlweid, M., et al.: VCC: Contract-based modular verification of concurrent C. In: ICSE Companion. IEEE (2009)Google Scholar
  26. 26.
    Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)zbMATHCrossRefGoogle Scholar
  27. 27.
    Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Research Report 1366, LRI, Université Paris Sud (March 2003)Google Scholar
  28. 28.
    Floyd, R.W.: Assigning meanings to programs. Proceedings of the American Mathematical Society Symposia on Applied Mathematics 19 (1967)Google Scholar
  29. 29.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Granger, P.: Static Analysis of Linear Congruence Equalities Among Variables of a Program. In: Abramsky, S. (ed.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 169–192. Springer, Heidelberg (1991)Google Scholar
  31. 31.
    Groslambert, J., Stouls, N.: Vérification de propriétés LTL sur des programmes C par génération d’annotations. In: AFADL (2009) (in French)Google Scholar
  32. 32.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10) (1969)Google Scholar
  33. 33.
    Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. PLDI, SIGPLAN Notices 23(7), 35–46 (1988)CrossRefGoogle Scholar
  34. 34.
    IEEE Std 754-2008. IEEE standard for floating-point arithmetic. Technical report (2008), http://dx.doi.org/10.1109/IEEESTD.2008.4610935
  35. 35.
    ISO/IEC JTC1/SC22/WG14. 9899:TC3: Programming Languages—C (2007), http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
  36. 36.
    Kosmatov, N.: Online version of PathCrawler, http://pathcrawler-online.com/
  37. 37.
    Kosmatov, N.: XI: Constraint-Based Techniques for Software Testing. In: Artificial Intelligence Applications for Improved Software Engineering Development: New Prospects, IGI Global (2010)Google Scholar
  38. 38.
    Leino, K.R.M.: This is Boogie 2. Microsoft Research (2008)Google Scholar
  39. 39.
    Marché, C., Moy, Y.: The Jessie plugin for Deduction Verification in Frama-C, version 2.30. INRIA (2012), http://krakatoa.lri.fr/jessie.pdf
  40. 40.
    Marre, B., Arnould, A.: Test sequences generation from Lustre descriptions: GATeL. In: ASE, Grenoble, France, pp. 229–237 (September 2000)Google Scholar
  41. 41.
  42. 42.
    Meyer, B.: Object-oriented Software Construction. Prentice-Hall (1997)Google Scholar
  43. 43.
    Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools for analysis and transformation of C programs. In: CC 2002. LNCS, vol. 2304, p. 213. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  44. 44.
    Pariente, D., Ledinot, E.: Formal Verification of Industrial C Code using Frama-C: a Case Study. In: FoVeOOS (2010)Google Scholar
  45. 45.
    Pnueli, A.: The temporal logic of programs. In: FOCS. IEEE (1977)Google Scholar
  46. 46.
    Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen, D.: Applying Formal Proof Techniques to Avionics Software: A Pragmatic Approach. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1798–1815. Springer, Heidelberg (1999)Google Scholar
  47. 47.
    Schimpf, J., Shen, K.: ECLiPSe - from LP to CLP. Theory and Practice of Logic Programming 12(1-2), 127–156 (2011)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Signoles, J.: Foncteurs impératifs et composés: la notion de projet dans Frama-C. In: JFLA, Studia Informatica Universalis, vol. 7(2) (2009) (in French)Google Scholar
  49. 49.
    Signoles, J., Correnson, L., Prevosto, V.: Frama-C Plug-in Development Guide (October 2011), http://frama-c.com/download/plugin-developer.pdf
  50. 50.
    Stouls, N., Prevosto, V.: Aoraí plug-in tutorial, version Nitrogen-20111001 (October 2011), http://frama-c.com/download/frama-c-aorai-manual.pdf
  51. 51.
    Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: Automatic Generation of Path Tests by Combining Static and Dynamic Analysis. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  52. 52.
    Yakobowski, B., et al.: Formal verification of software important to safety using the Frama-C tool suite. In: NPIC (July 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pascal Cuoq
    • 1
  • Florent Kirchner
    • 1
  • Nikolai Kosmatov
    • 1
  • Virgile Prevosto
    • 1
  • Julien Signoles
    • 1
  • Boris Yakobowski
    • 1
  1. 1.LIST, Software Safety LaboratoryCEAGif-sur-YvetteFrance

Personalised recommendations