Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database

  • Rolf Köhler
  • Michael Hirsch
  • Betty Mohler
  • Bernhard Schölkopf
  • Stefan Harmeling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7578)

Abstract

Motion blur due to camera shake is one of the predominant sources of degradation in handheld photography. Single image blind deconvolution (BD) or motion deblurring aims at restoring a sharp latent image from the blurred recorded picture without knowing the camera motion that took place during the exposure. BD is a long-standing problem, but has attracted much attention recently, cumulating in several algorithms able to restore photos degraded by real camera motion in high quality. In this paper, we present a benchmark dataset for motion deblurring that allows quantitative performance evaluation and comparison of recent approaches featuring non-uniform blur models. To this end, we record and analyse real camera motion, which is played back on a robot platform such that we can record a sequence of sharp images sampling the six dimensional camera motion trajectory. The goal of deblurring is to recover one of these sharp images, and our dataset contains all information to assess how closely various algorithms approximate that goal. In a comprehensive comparison, we evaluate state-of-the-art single image BD algorithms incorporating uniform and non-uniform blur models.

Keywords

blind deconvolution camera shake benchmark motion blur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)Google Scholar
  2. 2.
    Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2010)Google Scholar
  3. 3.
    Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62, 55–59 (1972)CrossRefGoogle Scholar
  5. 5.
    Lucy, L.B.: An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745–754 (1974)CrossRefGoogle Scholar
  6. 6.
    Kundur, D., Hatzinakos, D.: Blind image deconvolution. Signal Processing Magazine 13, 43–64 (1996)CrossRefGoogle Scholar
  7. 7.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Transactions on Graphics, SIGGRAPH (2006)Google Scholar
  8. 8.
    Miskin, J., MacKay, D.J.C.: Ensemble learning for blind image separation and deconvolution. In: Advances Independent Component Analysis (2000)Google Scholar
  9. 9.
    Field, D.J.: What is the goal of sensory coding? Neural Computation 6, 559–601 (1994)CrossRefGoogle Scholar
  10. 10.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics, SIGGRAPH (2008)Google Scholar
  11. 11.
    Cho, S., Lee, S.: Fast motion deblurring. ACM Transactions on Graphics, SIGGRAPH ASIA (2009)Google Scholar
  12. 12.
    Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)Google Scholar
  14. 14.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)Google Scholar
  15. 15.
    Tai, Y.W., Tan, P., Brown, M.S.: Richardson-lucy deblurring for scenes under a projective motion path. Technical Report of Korea Advanced Institue of Science and Technology, KAIST (2009)Google Scholar
  16. 16.
    Tai, Y.W., Tan, P., Brown, M.S.: Richardson-lucy deblurring for scenes under a projective motion path. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI (2011)Google Scholar
  17. 17.
    Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: Advances in Neural Information Processing Systems, NIPS (2010)Google Scholar
  18. 18.
    Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera-shake. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV (2011)Google Scholar
  19. 19.
    Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. In: Proceedings of the IEEE Workshop on Color and Photometry in Computer Vision, with ICCV 2011 (2011)Google Scholar
  20. 20.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics, SIGGRAPH (2008)Google Scholar
  21. 21.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Transactions on Graphics, SIGGRAPH (2006)Google Scholar
  22. 22.
    Cho, T.S., Levin, A., Durand, F., Freeman, W.T.: Motion blur removal with orthogonal parabolic exposures. In: IEEE International Conference in Computational Photography, ICCP (2010)Google Scholar
  23. 23.
    Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Transactions on Graphics, SIGGRAPH (2010)Google Scholar
  24. 24.
    Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Optical Letters 33, 156–158 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rolf Köhler
    • 1
  • Michael Hirsch
    • 1
  • Betty Mohler
    • 1
  • Bernhard Schölkopf
    • 1
  • Stefan Harmeling
    • 1
  1. 1.Max Planck Institute for Intelligent SystemsTübingenGermany

Personalised recommendations