Frequency-Space Decomposition and Acquisition of Light Transport under Spatially Varying Illumination

  • Dikpal Reddy
  • Ravi Ramamoorthi
  • Brian Curless
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7577)


We show that, under spatially varying illumination, the light transport of diffuse scenes can be decomposed into direct, near-range (subsurface scattering and local inter-reflections) and far-range transports (diffuse inter-reflections). We show that these three component transports are redundant either in the spatial or the frequency domain and can be separated using appropriate illumination patterns. We propose a novel, efficient method to sequentially separate and acquire the component transports. First, we acquire the direct transport by extending the direct-global separation technique from floodlit images to full transport matrices. Next, we separate and acquire the near-range transport by illuminating patterns sampled uniformly in the frequency domain. Finally, we acquire the far-range transport by illuminating low-frequency patterns. We show that theoretically, our acquisition method achieves the lower bound our model places on the required number of patterns. We quantify the savings in number of patterns over the brute force approach. We validate our observations and acquisition method with rendered and real examples throughout.


Discrete Fourier Transform Direct Transport Component Transport Global Illumination Light Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nayar, S.K., Ikeuchi, K., Kanade, T.: Shape from interreflections. International Journal of Computer Vision 6, 173–195 (1991)CrossRefGoogle Scholar
  2. 2.
    Koenderink, J.J., van Doorn, A.J.: Geometrical modes as a general method to treat diffuse interreflections in radiometry. J. Opt. Soc. Am. 73, 843–850 (1983)CrossRefGoogle Scholar
  3. 3.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: SIGGRAPH 2001, pp. 511–518. ACM (2001)Google Scholar
  4. 4.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 935–944 (2006)CrossRefGoogle Scholar
  5. 5.
    Gu, J., Kobayashi, T., Gupta, M., Nayar, S.: Multiplexed illumination for scene recovery in the presence of global illumination. In: ICCV 2011, pp. 691–698 (2011)Google Scholar
  6. 6.
    Fuchs, M., Blanz, V., Lensch, H.P., Seidel, H.P.: Adaptive sampling of reflectance fields. ACM Trans. Graph. 26 (2007)Google Scholar
  7. 7.
    Wang, J., Dong, Y., Tong, X., Lin, Z., Guo, B.: Kernel nyström method for light transport. ACM Trans. Graph. 28, 29:1–29:10 (2009)Google Scholar
  8. 8.
    O’Toole, M., Kutulakos, K.N.: Optical computing for fast light transport analysis. In: SIGGRAPH ASIA 2010, pp. 164:1–164:12. ACM (2010)Google Scholar
  9. 9.
    Peers, P., Mahajan, D.K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., Debevec, P.: Compressive light transport sensing. ACM Trans. Graph. 28, 3:1–3:18 (2009)Google Scholar
  10. 10.
    Masselus, V., Peers, P., Dutré, P., Willems, Y.D.: Relighting with 4D incident light fields. In: SIGGRAPH 2003, pp. 613–620. ACM (2003)Google Scholar
  11. 11.
    Sen, P., Chen, B., Garg, G., Marschner, S.R., Horowitz, M., Levoy, M., Lensch, H.P.A.: Dual photography. In: SIGGRAPH 2005, pp. 745–755. ACM (2005)Google Scholar
  12. 12.
    Garg, G., Talvala, E.V., Levoy, M., Lensch, H.P.A.: Symmetric photography: Exploiting data-sparseness in reflectance fields. In: Eurographics Symposium, pp. 251–262. Eurographics Association (2006)Google Scholar
  13. 13.
    Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: ICCV 2005, pp. 1440–1447 (2005)Google Scholar
  14. 14.
    Chandraker, M., Bai, J., Ng, T.T., Ramamoorthi, R.: On the duality of forward and inverse light transport. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2122–2128 (2011)CrossRefGoogle Scholar
  15. 15.
    Wu, D., O’Toole, M., Velten, A., Agrawal, A., Raskar, R.: Decomposing global light transport using time of flight imaging. In: CVPR 2012, pp. 366–373 (2012)Google Scholar
  16. 16.
    O’Toole, M., Raskar, R., Kutulakos, K.N.: Primal-dual coding to probe light transport. ACM Trans. Graph. 31, 39:1–39:11 (2012)Google Scholar
  17. 17.
    Babacan, S., Molina, R., Katsaggelos, A.: Bayesian compressive sensing using laplace priors. IEEE Transactions on Image Processing 19, 53–64 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dikpal Reddy
    • 1
  • Ravi Ramamoorthi
    • 1
  • Brian Curless
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.University of WashingtonUSA

Personalised recommendations