Fast Planar Correlation Clustering for Image Segmentation

  • Julian Yarkony
  • Alexander Ihler
  • Charless C. Fowlkes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7577)


We describe a new optimization scheme for finding high-quality clusterings in planar graphs that uses weighted perfect matching as a subroutine. Our method provides lower-bounds on the energy of the optimal correlation clustering that are typically fast to compute and tight in practice. We demonstrate our algorithm on the problem of image segmentation where this approach outperforms existing global optimization techniques in minimizing the objective and is competitive with the state of the art in producing high-quality segmentations.


Image Segmentation Planar Graph Integer Linear Programming Markov Random Field Linear Programming Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borenstein, E., Ullman, S.: Combined top-down/bottom-up segmentation. TPAMI 30 (2008)Google Scholar
  2. 2.
    Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In: CVPR (2006)Google Scholar
  3. 3.
    Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.: Layered object models for image segmentation. TPAMI 34, 1731–1743 (2011)CrossRefGoogle Scholar
  4. 4.
    Gould, S., Gao, T., Koller, D.: Region-based segmentation and object detection. In: NIPS (2009)Google Scholar
  5. 5.
    Ladický, L., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, Where and How Many? Combining Object Detectors and CRFs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 424–437. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22, 888–905 (2000)CrossRefGoogle Scholar
  7. 7.
    Wang, S., Kubota, T., Siskind, J.M., Wang, J.: Salient closed boundary extraction with ratio contour. PAMI (2005)Google Scholar
  8. 8.
    Zhu, Q., Song, G., Shi, J.: Untangling cycles for contour grouping. In: ICCV (2007)Google Scholar
  9. 9.
    Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442, 810–813 (2006)CrossRefGoogle Scholar
  10. 10.
    Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: CVPR (2005)Google Scholar
  11. 11.
    Taskar, B.: Learning Structured Prediction Models: A Large Margin Approach. Stanford University (2004)Google Scholar
  12. 12.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Demaine, E., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theoretical Computer Science 361, 172–187 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Computing 4, 864–894 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structures in graph games. arXiv:1108.5248v1 (2011)Google Scholar
  16. 16.
    Andres, B., Kappes, J., Beier, T., Koethe, U., Hamprecht, F.: Probabilistic image segmentaiton with closedness constraints. In: ICCV (2011)Google Scholar
  17. 17.
    Kim, S., Nowozin, S., Kohli, P., Yoo, C.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)Google Scholar
  18. 18.
    Appel, K., Haken, W.: Every Planar Map is Four-Colorable. American Mathematical Society (1989)Google Scholar
  19. 19.
    Wainwright, M.J., Jaakkola, T., Willsky, A.S.: MAP estimation via agreement on (hyper)trees: message-passing and linear programming approaches. IEEE Trans. Inform. Theory 51, 3697–3717 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Machine Intell. 28, 1568–1583 (2006)CrossRefGoogle Scholar
  21. 21.
    Kasteleyn, P.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110 (1967)Google Scholar
  22. 22.
    Fisher, M.: On the dimer solution of planar Ising models 7, 1776–1781 (1966)Google Scholar
  23. 23.
    Globerson, A., Jaakkola, T.: Approximate inference using planar graph decomposition. In: NIPS (2007)Google Scholar
  24. 24.
    Schraudolph, N., Kamenetsky, D.: Efficient exact inference in planar Ising models. In: NIPS (2009)Google Scholar
  25. 25.
    Schraudolph, N.: Polynomial-time exact inference in np-hard binary MRFs via reweighted perfect matching. In: AISTATS (2010)Google Scholar
  26. 26.
    Batra, D., Gallagher, A., Parikh, D., Chen, T.: Beyond trees: MRF inference via outer-planar decomposition. In: CVPR (2010)Google Scholar
  27. 27.
    Yarkony, J., Ihler, A., Fowlkes, C.: Planar cycle covering graphs. In: UAI (2011)Google Scholar
  28. 28.
    Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: Message-passing revisited. In: ICCV (2007)Google Scholar
  29. 29.
    Yarkony, J.: Planarity Matters: MAP inference in Planar Markov Random Fields with Applications to Computer Vision. University of California, Irvine (2012)Google Scholar
  30. 30.
    Deza, M., Laurent, M.: Geometry of cuts and metrics. Springer (1997)Google Scholar
  31. 31.
    Barahona, F.: The max cut problem in graphs not contractible to k 5. Operations Research Letters 2, 107–111 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)Google Scholar
  33. 33.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33, 898–916 (2011)CrossRefGoogle Scholar
  34. 34.
    Kolmogorov, V.: Blossom V: A new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1(1), 43–67 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Schraudolph, N., Kamenetsky, D.: Efficient exact inference in planar Ising models. Technical Report 0810.4401 (2008)Google Scholar
  36. 36.
    Sontag, D., Meltzer, T., Globerson, A., Weiss, Y., Jaakkola, T.: Tightening LP relaxations for MAP using message passing. In: UAI (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julian Yarkony
    • 1
  • Alexander Ihler
    • 1
  • Charless C. Fowlkes
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations