Advertisement

Stixels Motion Estimation without Optical Flow Computation

  • Bertan Günyel
  • Rodrigo Benenson
  • Radu Timofte
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7577)

Abstract

This paper presents a new approach to estimate the motion of objects seen from a stereo rig mounted on a ground mobile robot. We exploit the prior knowledge on ground plane presence and rough shape of objects, to extract a simplified world model, named stixel world. The contribution of this paper is to show that stixels motion can be estimated directly solving a single dynamic programming problem instead of an image wide optical flow computation. We compare this new method with baseline methods, show competitive results quality-wise, and a significant gain speed-wise.

References

  1. 1.
    Badino, H., Franke, U., Pfeiffer, D.: The Stixel World - A Compact Medium Level Representation of the 3D-World. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 51–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Benenson, R., Timofte, R., Van Gool, L.: Stixels estimation without depthmap computation. In: ICCV, CVVT Workshop (2011)Google Scholar
  3. 3.
    Pfeiffer, D., Franke, U.: Efficient representation of traffic scenes by means of dynamic stixels. In: IVS (2010)Google Scholar
  4. 4.
    Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: CVPR (2010)Google Scholar
  5. 5.
    Leibe, B., Schindler, K., Van Gool, L.: Coupled detection and trajectory estimation for multi-object tracking. In: ICCV (2007)Google Scholar
  6. 6.
    Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008)Google Scholar
  7. 7.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. PAMI (2011)Google Scholar
  8. 8.
    Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L 1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Sundaram, N., Brox, T., Keutzer, K.: Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Miztel, D., Leibe, B.: Real-time multi-person tracking with detector assisted structure propagation. In: Proc. of the Int. Conf. on Computer Vision (ICCV), Workshop on Challenges and Opportunities in Robot Perception, CORP (2011)Google Scholar
  11. 11.
    Geiger, A., Roser, M., Urtasun, R.: Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust multi-person tracking from a mobile platform. PAMI (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bertan Günyel
    • 1
    • 2
  • Rodrigo Benenson
    • 1
  • Radu Timofte
    • 1
  • Luc Van Gool
    • 1
  1. 1.ESAT-PSI-VISICS/IBBTKatholieke Universiteit LeuvenBelgium
  2. 2.3cap Technologies GmbOberschleißheimGermany

Personalised recommendations