Advertisement

Towards Optimal Design of Time and Color Multiplexing Codes

  • Tsung-Han Chan
  • Kui Jia
  • Eliot Wycoff
  • Chong-Yung Chi
  • Yi Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7577)

Abstract

Multiplexed illumination has been proved to be valuable and beneficial, in terms of noise reduction, in wide applications of computer vision and graphics, provided that the limitations of photon noise and saturation are properly tackled. Existing optimal multiplexing codes, in the sense of maximum signal-to-noise ratio (SNR), are primarily designed for time multiplexing, but they only apply to a multiplexing system requiring the number of measurements (M) equal to the number of illumination sources (N). In this paper, we formulate a general code design problem, where M ≥ N, for time and color multiplexing, and develop a sequential semi-definite programming to deal with the formulated optimization problem. The proposed formulation and method can be readily specialized to time multiplexing, thereby making such optimized codes have a much broader application. Computer simulations will discover the main merit of the method— a significant boost of SNR as M increases. Experiments will also be presented to demonstrate the effectiveness and superiority of the method in object illumination.

Keywords

Multiplexing codes maximum SNR convex optimization 

References

  1. 1.
    Harwit, M., Sloane, N.J.A.: Hadamard Transform Optics. Academic Press (1979)Google Scholar
  2. 2.
    Schechner, Y.Y., Nayar, S.K., Belhumeur, P.N.: A theory of multiplexed illumination. In: IEEE International Conf. Computer Vision (2003)Google Scholar
  3. 3.
    Gu, J., Kobayashi, T., Gupta, M., Nayar, S.K.: Multiplexed illumination for scene recovery in the presence of global illumination. In: IEEE International Conf. Computer Vision (2011)Google Scholar
  4. 4.
    Schechner, Y.Y., Nayar, S.K., Belhumeur, P.N.: Multiplexing for optimal lighting. IEEE Trans. Pattern Analysis and Machine Intelligence 29, 1339–1354 (2007)CrossRefGoogle Scholar
  5. 5.
    Alterman, M., Schechner, Y.Y., Weiss, A.: Multiplexed fluorescence unmixing. In: IEEE International Conf. Computational Photography (2010)Google Scholar
  6. 6.
    Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 756–764 (2005)CrossRefGoogle Scholar
  7. 7.
    Kim, H., Wilburn, B., Ben-Ezra, M.: Photometric Stereo for Dynamic Surface Orientations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 59–72. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fyffe, G., Yu, X., Debevec, P.: Single-shot photometric stereo by spectral multiplexing. In: IEEE International Conf. Computational Photography (2011)Google Scholar
  9. 9.
    Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Towards a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans. Pattern Analysis and Machine Intelligence (2012)Google Scholar
  10. 10.
    Wutting, A.: Optimal transformations for optical multiplex measurements in the presence of photon noise. Applied Optics 44, 2710–2719 (2005)CrossRefGoogle Scholar
  11. 11.
    Ratner, N., Schechner, Y.Y.: Illumination multiplexing within fundamental limits. In: IEEE Conf. Computer Vision and Pattern Recognition (2007)Google Scholar
  12. 12.
    Ratner, N., Schechner, Y.Y., Goldberg, F.: Optimal multiplexed sensing: bounds, conditions and a graph theory link. Optics Express 15, 17072–17079 (2007)CrossRefGoogle Scholar
  13. 13.
    Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using multiplexed illumination. In: IEEE International Conf. Computer Vision (2007)Google Scholar
  14. 14.
    Decker, B.D., Kautz, J., Mertens, T., Bekaert, P.: Capturing multiple illumination conditions using time and color multiplexing. In: IEEE Conf. Computer Vision and Pattern Recognition (2009)Google Scholar
  15. 15.
    Liu, C., Freemand, W.T., Szeliski, R., Kang, S.B.: Noise estimation from a single image. In: IEEE Conf. Computer Vision and Pattern Recognition (2006)Google Scholar
  16. 16.
    Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)zbMATHGoogle Scholar
  17. 17.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (2011)Google Scholar
  18. 18.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, New York (1985)zbMATHGoogle Scholar
  19. 19.
    Higham, N.J.: Newton’s method for the matrix square root. Mathmatics of Computation 46, 537–549 (1986)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tsung-Han Chan
    • 1
    • 2
  • Kui Jia
    • 1
  • Eliot Wycoff
    • 1
  • Chong-Yung Chi
    • 2
  • Yi Ma
    • 3
    • 4
  1. 1.Advanced Digital Sciences CenterSingapore
  2. 2.Inst. Communications Eng.National Tsing Hua UniversityTaiwan
  3. 3.Microsoft Research AsiaBeijingChina
  4. 4.Dept. Elect. and Computer Eng.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations