Advertisement

A Non-parametric Hierarchical Model to Discover Behavior Dynamics from Tracks

  • Julian F. P. Kooij
  • Gwenn Englebienne
  • Dariu M. Gavrila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7577)

Abstract

We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by various behaviors and represent spatially localized occurrences of a person’s low-level motion dynamics using Switching Linear Dynamics Systems. Since the model handles real-valued features directly, we do not lose information by quantizing measurements to ‘visual words’ and can thus discover variations in standing, walking and running without discrete thresholds. We describe inference using Gibbs sampling and validate our approach on several artificial and real-world tracking datasets. We show that our model can distinguish relevant behavior patterns that an existing state-of-the-art method for hierarchical clustering cannot.

Keywords

Anomaly Detection Latent Dirichlet Allocation Dynamic Time Warping Behavior Class Test Track 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  2. 2.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. The Journal of the Acoustical Society of America 101(476), 1566–1581 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in Neural Information Processing Systems, vol. 1, pp. 577–584 (2002)Google Scholar
  4. 4.
    Fox, E., Sudderth, E., Jordan, M., Willsky, A.: Bayesian nonparametric inference of switching dynamic linear models. IEEE Trans. on Signal Processing 59(4), 1569–1585 (2011)CrossRefGoogle Scholar
  5. 5.
    Rosti, A.V., Gales, M.J.F.: Rao-Blackwellised Gibbs sampling for switching linear dynamical systems. In: Proc. of the ICASSP, vol. 1, p. I–809 (2004)Google Scholar
  6. 6.
    Hospedales, T., Gong, S., Xiang, T.: A Markov clustering topic model for mining behaviour in video. In: Proc. of the IEEE ICCV, pp. 1165–1172 (2009)Google Scholar
  7. 7.
    Kuettel, D., Breitenstein, M., Van Gool, L., Ferrari, V.: What’s going on? Discovering spatiotemporal dependencies in dynamic scenes. In: Proc. of the IEEE CVPR, pp. 1951–1958 (2010)Google Scholar
  8. 8.
    Emonet, R., Varadarajan, J., Odobez, J.M.: Multi-camera open space human activity discovery for anomaly detection. In: Proc. of the IEEE AVSS, p. 6 (August 2011)Google Scholar
  9. 9.
    Varadarajan, J., Emonet, R., Odobez, J.M.: Probabilistic latent sequential motifs: Discovering temporal activity patterns in video scenes. In: Proc. of the BMVC (2010)Google Scholar
  10. 10.
    Fu, Z., Hu, W., Tan, T.: Similarity based vehicle trajectory clustering and anomaly detection. In: Proc. of the ICIP, vol. 2, p. II–602 (2005)Google Scholar
  11. 11.
    Wang, X., Tieu, K., Grimson, E.: Learning Semantic Scene Models by Trajectory Analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part III. LNCS, vol. 3953, pp. 110–123. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Keogh, E., Pazzani, M.: Scaling up dynamic time warping for datamining applications. In: Proc. of the ACM SIGKDD, pp. 285–289 (2000)Google Scholar
  13. 13.
    Wang, X., Ma, K.T., Ng, G.W., Grimson, W.E.: Trajectory analysis and semantic region modeling using a nonparametric Bayesian model. In: Proc. of the IEEE CVPR, pp. 1–8 (2008)Google Scholar
  14. 14.
    Fernyhough, J., Cohn, A., Hogg, D.: Generation of Semantic Regions From Image Sequences. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 475–484. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Makris, D., Ellis, T.: Automatic learning of an activity-based semantic scene model. In: Proc. of the IEEE AVSS, pp. 183–188 (2003)Google Scholar
  16. 16.
    Lin, D., Grimson, E., Fisher, J.: Learning visual flows: A Lie algebraic approach. In: Proc. of the IEEE CVPR, pp. 747–754 (2009)Google Scholar
  17. 17.
    Rauch, H., Tung, F., Striebel, C.: Maximum likelihood estimates of linear dynamic systems. AIAA Journal 3(8), 1445–1450 (1965)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jensen, C., Kjærulff, U., Kong, A.: Blocking Gibbs sampling in very large probabilistic expert systems. International J. of Human Computer Studies 42(6), 647–666 (1995)CrossRefGoogle Scholar
  19. 19.
    Liem, M., Gavrila, D.M.: Multi-person Localization and Track Assignment in Overlapping Camera Views. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 173–183. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: Proc. of the IEEE ICCV, pp. 261–268 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julian F. P. Kooij
    • 1
  • Gwenn Englebienne
    • 1
  • Dariu M. Gavrila
    • 1
  1. 1.Intelligent Systems LaboratoryUniversity of AmsterdamThe Netherlands

Personalised recommendations