Motion Interchange Patterns for Action Recognition in Unconstrained Videos

  • Orit Kliper-Gross
  • Yaron Gurovich
  • Tal Hassner
  • Lior Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7577)


Action Recognition in videos is an active research field that is fueled by an acute need, spanning several application domains. Still, existing systems fall short of the applications’ needs in real-world scenarios, where the quality of the video is less than optimal and the viewpoint is uncontrolled and often not static. In this paper, we consider the key elements of motion encoding and focus on capturing local changes in motion directions. In addition, we decouple image edges from motion edges using a suppression mechanism, and compensate for global camera motion by using an especially fitted registration scheme. Combined with a standard bag-of-words technique, our methods achieves state-of-the-art performance in the most recent and challenging benchmarks.


Video Clip Action Recognition Local Binary Pattern Current Frame Camera Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poppe, R.: A survey on vision-based human action recognition. IVC 28 (2010)Google Scholar
  2. 2.
    Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. CSVT 18 (2008)Google Scholar
  3. 3.
    Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using hidden markov model. In: CVPR (1992)Google Scholar
  4. 4.
    Cheung, K., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. In: CVPR (2003)Google Scholar
  5. 5.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. TPAMI 29 (2007)Google Scholar
  6. 6.
    Sadanand, S., Corso, J.: Action bank: A high-level representation of activity in video. In: CVPR (2012)Google Scholar
  7. 7.
    Laptev, I.: On space-time interest points. IJCV 64 (2005)Google Scholar
  8. 8.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)Google Scholar
  9. 9.
    Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: CVPR (2010)Google Scholar
  10. 10.
    Wang, H., Klaser, A., Schmid, C., Liu, C.: Action recognition by dense trajectories. In: CVPR (2011)Google Scholar
  11. 11.
    Liu, J., Yang, Y., Saleemi, I., Shah, M.: Learning semantic features for action recognition via diffusion maps. CVIU 116 (2012)Google Scholar
  12. 12.
    Kliper-Gross, O., Hassner, T., Wolf, L.: The action similarity labeling challenge. TPAMI 34 (2012)Google Scholar
  13. 13.
    Ali, S., Shah, M.: Human action recognition in videos using kinematic features and multiple instance learning. TPAMI 32 (2010)Google Scholar
  14. 14.
    Schindler, K., Van Gool, L.: Action snippets: How many frames does human action recognition require? In: CVPR (2008)Google Scholar
  15. 15.
    Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: ICCV (2005)Google Scholar
  16. 16.
    Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV (2003)Google Scholar
  17. 17.
    Fathi, A., Mori, G.: Action recognition by learning mid-level motion features. In: CVPR (2008)Google Scholar
  18. 18.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Human activity recognition using a dynamic texture based method. In: BMVC (2008)Google Scholar
  19. 19.
    Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: Real-time detection of violent crowd behavior. In: CVPRW (2012)Google Scholar
  20. 20.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. TPAMI 24 (2002)Google Scholar
  21. 21.
    Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. TPAMI 29 (2007)Google Scholar
  22. 22.
    Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: ICCV (2009)Google Scholar
  23. 23.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR (2007)Google Scholar
  24. 24.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: ECCVW (2008)Google Scholar
  25. 25.
    Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. TPAMI 33 (2011)Google Scholar
  26. 26.
    Irani, M., Anandan, P.: About direct methods. In: ICCVW (1999)Google Scholar
  27. 27.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, UMASS, TR 07-49 (2007)Google Scholar
  28. 28.
    Nguyen, H.V., Bai, L.: Cosine Similarity Metric Learning for Face Verification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 709–720. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Kliper-Gross, O., Hassner, T., Wolf, L.: The one shot similarity metric learning for action recognition. In: SIMBAD (2011)Google Scholar
  30. 30.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)Google Scholar
  31. 31.
    Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV (2011)Google Scholar
  32. 32.
    Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV (2007)Google Scholar
  33. 33.
    Jhuang, H., Garrote, E., Mutch, J., Yu, X., Khilnani, V., Poggio, T., Steele, A., Serre, T.: Automated home-cage behavioral phenotyping of mice. Nature Communications 1 (2010)Google Scholar
  34. 34.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: ICPR (2004)Google Scholar
  35. 35.
    Le, Q., Zou, W., Yeung, S., Ng, A.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Orit Kliper-Gross
    • 1
  • Yaron Gurovich
    • 2
  • Tal Hassner
    • 3
  • Lior Wolf
    • 2
  1. 1.The Weizmann Institute of ScienceIsrael
  2. 2.Tel-Aviv UniversityIsrael
  3. 3.The Open UniversityIsrael

Personalised recommendations