Online Video Segmentation by Bayesian Split-Merge Clustering

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7575)


We present an online video segmentation algorithm based on a novel nonparametric Bayesian clustering method called Bayesian Split-Merge Clustering (BSMC). BSMC can efficiently cluster dynamically changing data through split and merge processes at each time step, where the decision for splitting and merging is made by approximate posterior distributions over partitions with Dirichlet Process (DP) priors. Moreover, BSMC sidesteps the difficult problem of finding the proper number of clusters by virtue of the flexibility of nonparametric Bayesian models. We naturally apply BSMC to online video segmentation, which is composed of three steps—pixel clustering, histogram-based merging and temporal matching. We demonstrate the performance of our algorithm on complex real video sequences compared to other existing methods.


Normalize Mutual Information Dirichlet Process Adjust Rand Index Evolutionary Cluster Initial Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), Philadelphia, PA (2006)Google Scholar
  2. 2.
    Chi, Y., Song, X., Zhou, D., Hino, K.: Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), San Jose, CA (2007)Google Scholar
  3. 3.
    DeMenthon, D., Megret, R.: Sptio-temporal segmentation of video by hierarchical mean shift analysis. Technical Report LAMP-TR-090,CAR-TR-978,CS-TR-4388,UMIACS-TR-2002-68, University of Maryland, College Park (2002)Google Scholar
  4. 4.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA (2010)Google Scholar
  5. 5.
    Wang, J., Thiesson, B., Xu, Y., Cohen, M.: Image and Video Segmentation by Anisotropic Kernel Mean Shift. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 238–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 2, 1152–1174 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1, 209–230 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Xu, T., Zhang, Z., Yu, P.S., Long, B.: Dirichlet process based evolutionary clustering. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), Pisa, Italy (2008)Google Scholar
  9. 9.
    Orbanz, P., Braendle, S., Buhmann, J.M.: Bayesian Order-Adaptive Clustering for Video Segmentation. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 334–349. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Heller, K.A., Ghahrahmani, Z.: Bayesian hierarchical clustering. In: Proceedings of the International Conference on Machine Learning (ICML), Bonn, Germany (2005)Google Scholar
  11. 11.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31, 264–323 (1999)CrossRefGoogle Scholar
  12. 12.
    Orbanz, P., Buhmann, J.M.: Smooth Image Segmentation by Nonparametric Bayesian Inference. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 444–457. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90, 577–588 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)CrossRefGoogle Scholar
  15. 15.
    Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Toronto, Canada (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Division of IT Convergence EngineeringPohang University of Science and TechnologyPohangKorea
  3. 3.Department of Creative IT Excellence EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations