Advertisement

Online Spatio-temporal Structural Context Learning for Visual Tracking

  • Longyin Wen
  • Zhaowei Cai
  • Zhen Lei
  • Dong Yi
  • Stan Z. Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7575)

Abstract

Visual tracking is a challenging problem, because the target frequently change its appearance, randomly move its location and get occluded by other objects in unconstrained environments. The state changes of the target are temporally and spatially continuous, in this paper therefore, a robust Spatio-Temporal structural context based Tracker (STT) is presented to complete the tracking task in unconstrained environments. The temporal context capture the historical appearance information of the target to prevent the tracker from drifting to the background in a long term tracking. The spatial context model integrates contributors, which are the key-points automatically discovered around the target, to build a supporting field. The supporting field provides much more information than appearance of the target itself so that the location of the target will be predicted more precisely. Extensive experiments on various challenging databases demonstrate the superiority of our proposed tracker over other state-of-the-art trackers.

Keywords

Spatio-temporal context constraint subspaces learning multiple instance boosting unconstrained environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lim, J., Ross, D.A., Lin, R.S., Yang, M.H.: Incremental learning for visual tracking. In: NIPS (2004)Google Scholar
  2. 2.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, pp. 798–805 (2006)Google Scholar
  3. 3.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Yu, Q., Dinh, T.B., Medioni, G.G.: Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Babenko, B., Yang, M.H., Belongie, S.J.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990 (2009)Google Scholar
  6. 6.
    Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: Parallel robust online simple tracking. In: CVPR, pp. 723–730 (2010)Google Scholar
  7. 7.
    Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: Bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)Google Scholar
  8. 8.
    Mei, X., Zhou, S.K., Porikli, F.: Probabilistic visual tracking via robust template matching and incremental subspace update. In: ICME, pp. 1818–1821 (2007)Google Scholar
  9. 9.
    Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. International Journal of Computer Vision 77, 125–141 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, B., Huang, J., Yang, L., Kulikowski, C.A.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)Google Scholar
  11. 11.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR, pp. 260–267 (2006)Google Scholar
  12. 12.
    Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV, pp. 1323–1330 (2011)Google Scholar
  13. 13.
    Yang, M., Wu, Y., Hua, G.: Context-aware visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1195–1209 (2009)CrossRefGoogle Scholar
  14. 14.
    Saffari, A., Godec, M., Pock, T., Leistner, C., Bischof, H.: Online multi-class lpboost. In: CVPR, pp. 3570–3577 (2010)Google Scholar
  15. 15.
    Gu, S., Tomasi, C.: Branch and track. In: CVPR, pp. 1169–1174 (2011)Google Scholar
  16. 16.
    Grabner, H., Matas, J., Van Gool, L.J., Cattin, P.C.: Tracking the invisible: Learning where the object might be. In: CVPR, pp. 1285–1292 (2010)Google Scholar
  17. 17.
    Dinh, T.B., Vo, N., Medioni, G.G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: CVPR, pp. 1177–1184 (2011)Google Scholar
  18. 18.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.J.: SURF: Speeded-up robust features. Computer Vision and Image Understanding 110, 346–359 (2008)CrossRefGoogle Scholar
  19. 19.
    Murphy, K., Torralba, A., Freeman, W.T.: Using the forest to see the trees: A graphical model relating features, objects, and scenes. In: NIPS (2003)Google Scholar
  20. 20.
    Torralba, A.: Contextual priming for object detection. International Journal of Computer Vision 53, 169–191 (2003)CrossRefGoogle Scholar
  21. 21.
    Hall, P.M., Marshall, A.D., Martin, R.R.: Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image Vision Comput. 20, 1009–1016 (2002)CrossRefGoogle Scholar
  22. 22.
    Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19, 696–710 (1997)CrossRefGoogle Scholar
  23. 23.
    Tipping, M., Bishop, C.: Probabilistic principal component analysis. J. Royal Statistical Soc. Series B 61, 611–622 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Palmer, S.: The effects of contextual scenes on the identification of objects. Memory & Cognition 3, 519–526 (1975)CrossRefGoogle Scholar
  25. 25.
    Torralba, A., Sinha, P.: Detecting faces in impoverished images. Journal of Vision 2 (2002)Google Scholar
  26. 26.
    Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: NIPS (2005)Google Scholar
  27. 27.
    Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)Google Scholar
  28. 28.
    Everingham, M., Van Gool, L.J., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88, 303–338 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Longyin Wen
    • 1
  • Zhaowei Cai
    • 1
  • Zhen Lei
    • 1
  • Dong Yi
    • 1
  • Stan Z. Li
    • 1
  1. 1.CBSR & NLPR, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations