Advertisement

Visual Tracking via Adaptive Tracker Selection with Multiple Features

  • Ju Hong Yoon
  • Du Yong Kim
  • Kuk-Jin Yoon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7575)

Abstract

In this paper, a robust visual tracking method is proposed to track an object in dynamic conditions that include motion blur, illumination changes, pose variations, and occlusions. To cope with these challenges, multiple trackers with different feature descriptors are utilized, and each of which shows different level of robustness to certain changes in an object’s appearance. To fuse these independent trackers, we propose two configurations, tracker selection and interaction. The tracker interaction is achieved based on a transition probability matrix (TPM) in a probabilistic manner. The tracker selection extracts one tracking result from among multiple tracker outputs by choosing the tracker that has the highest tracker probability. According to various changes in an object’s appearance, the TPM and tracker probability are updated in a recursive Bayesian form by evaluating each tracker’s reliability, which is measured by a robust tracker likelihood function (TLF). When the tracking in each frame is completed, the estimated object’s state is obtained and fed into the reference update via the proposed learning strategy, which retains the robustness and adaptability of the TLF and multiple trackers. The experimental results demonstrate that our proposed method is robust in various benchmark scenarios.

Keywords

Visual tracking multiple features transition probability matrix robust likelihood function tracker interaction appearance learning 

References

  1. 1.
    Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV 29(1), 5–28 (1998)CrossRefGoogle Scholar
  2. 2.
    Jilkov, V.P., Li, X.R.: Online Bayesian estimation of transition probabilities for markovian jump systems. IEEE Transactions on Signal Processing 52(6), 307–315 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ross, D., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)CrossRefGoogle Scholar
  4. 4.
    Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: Prost: Parallel robust online simple tracking. In: CVPR, pp. 723–730 (2010)Google Scholar
  5. 5.
    Spengler, M., Schiele, B.: Towards robust multi-cue integration for visual tracking. Machine Vision and Applications 14(1), 50–58 (2003)CrossRefGoogle Scholar
  6. 6.
    Giebel, J., Gavrila, D.M., Schnörr, C.: A Bayesian Framework for Multi-cue 3D Object Tracking. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 241–252. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Brasnett, P., Mihaylova, L., Canagarajah, N., Mihaylova, L., Canagarajah, N., Bull, D.: Particle filtering with multiple cues For object tracking. In: Proc. of SPIE’s Annual Symp. EI ST, pp. 430–441 (2005)Google Scholar
  8. 8.
    Wang, H., Suter, D.: Efficient visual tracking by probabilistic fusion of multiple cues. In: International Conference on Pattern Recognition, pp. 892–895 (2006)Google Scholar
  9. 9.
    Leichter, I., Lindenbaum, M., Rivlin, E.: A general framework for combining visual trackers - the ”black boxes” approach. IJCV 67(3), 343–363 (2006)CrossRefGoogle Scholar
  10. 10.
    Badrinarayanan, V., Perez, P., Clerc, F.L., Oisel, L.: Probabilistic color and adaptive multi-feature tracking with dynamically switched priority between cues. In: ICCV, pp. 1–8 (2007)Google Scholar
  11. 11.
    Du, W., Piater, J.: A Probabilistic Approach to Integrating Multiple Cues in Visual Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 225–238. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Moreno-Noguer, F., Sanfeliu, A., Samaras, D.: Dependent multiple cue integration for robust tracking. PAMI 30(4), 670–685 (2008)CrossRefGoogle Scholar
  13. 13.
    Stenger, B., Woodley, T., Cipolla, R.: Learning to track with multiple observers. In: CVPR, pp. 2647–2654 (2009)Google Scholar
  14. 14.
    Zelniker, E.E., Hospedales, T.M., Gong, S., Xiang, T.: A unified Bayesian framework for adaptive visual tracking. In: BMVC, pp. 18.1–18.11 (2009)Google Scholar
  15. 15.
    Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)Google Scholar
  16. 16.
    Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: ICCV, pp. 1436–1443 (2009)Google Scholar
  17. 17.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with applications to tracking and navigation. Wiley, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient l1 tracker with occlusion detection. In: CVPR, pp. 1257–1264 (2011)Google Scholar
  19. 19.
    Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1 regularized least squares. IEEE Journal on Selected Topics in Signal Processing 1(4), 606–617 (2007)CrossRefGoogle Scholar
  20. 20.
    Yang, M.-H.: Face detection. In: Encyclopedia of Biometrics, pp. 303–308 (2009)Google Scholar
  21. 21.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  22. 22.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Computing Surveys 38(4) (2006)Google Scholar
  23. 23.
    Cifuentes, C.G., Sturzel, M., Jurie, F., Brostow, G.J.: Motion models that only work sometimes. In: BMVC (2012)Google Scholar
  24. 24.
    Everingham, M., Van Gool, L.J., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88(2), 303–338 (2010)CrossRefGoogle Scholar
  25. 25.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)CrossRefGoogle Scholar
  26. 26.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, pp. 798–805 (2006)Google Scholar
  27. 27.
    Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990 (2009)Google Scholar
  28. 28.
    Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary classifiers by structural constraints. In: CVPR, pp. 49–56 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ju Hong Yoon
    • 1
  • Du Yong Kim
    • 2
  • Kuk-Jin Yoon
    • 1
  1. 1.Computer Vision Lab.Gwangju Institute of Science and TechnologyKorea
  2. 2.Applied Computing Lab.Gwangju Institute of Science and TechnologyKorea

Personalised recommendations