Divergence-Free Motion Estimation

  • Isabelle Herlin
  • Dominique Béréziat
  • Nicolas Mercier
  • Sergiy Zhuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7575)


This paper describes an innovative approach to estimate motion from image observations of divergence-free flows. Unlike most state-of-the-art methods, which only minimize the divergence of the motion field, our approach utilizes the vorticity-velocity formalism in order to construct a motion field in the subspace of divergence free functions. A 4DVAR-like image assimilation method is used to generate an estimate of the vorticity field given image observations. Given that vorticity estimate, the motion is obtained solving the Poisson equation. Results are illustrated on synthetic image observations and compared to those obtained with state-of-the-art methods, in order to quantify the improvements brought by the presented approach. The method is then applied to ocean satellite data to demonstrate its performance on the real images.


State Vector Image Sequence Data Assimilation Motion Estimation Image Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Béréziat, D., Herlin, I.: Solving ill-posed image processing problems using data assimilation. Numerical Algorithms 56, 219–252 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Deriaz, E., Perrier, V.: Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows. Journal of Turbulence 7, 1–37 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A, 97–110 (1986)CrossRefGoogle Scholar
  4. 4.
    Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Experiments in Fluids 48, 369–393 (2010)CrossRefGoogle Scholar
  5. 5.
    Horn, B., Schunk, B.: Determining optical flow. Art. Int. 17, 185–203 (1981)CrossRefGoogle Scholar
  6. 6.
    Amini, A.: A Scalar Function Formulation for Optical Flow. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 125–131. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Wildes, R., Amabile, M.: Physically based fluid flow recovery from image sequences. In: CVPR, pp. 969–975 (1997)Google Scholar
  8. 8.
    Del Bimbo, A., Nesi, P., Sanz, J.: Optical flow computation using extended constraints. Trans. on Image Processing 5, 720–739 (1996)CrossRefGoogle Scholar
  9. 9.
    Schunck, B.: The motion constraint equation for optical flow. In: ICPR (1984)Google Scholar
  10. 10.
    Vigan, X., Provost, C., Bleck, R., Courtier, P.: Sea surface velocities from Sea Surface Temperature image sequences. Journal of Geophysical Research 105, 19499–19514 (2000)CrossRefGoogle Scholar
  11. 11.
    Suter, D.: Motion estimation and vector splines. In: CVPR, pp. 939–942 (1994)Google Scholar
  12. 12.
    Isambert, T., Herlin, I., Berroir, J.P.: Fast and stable vector spline method for fluid flow estimation. In: ICIP, pp. 505–508 (2007)Google Scholar
  13. 13.
    Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. Pat. Anal. and Mach. Int. 24, 365–380 (2002)CrossRefGoogle Scholar
  14. 14.
    Song, S., Leahy, R.: Computation of 3-D Velocity Fields from 3-D Cine CT Images of a Human Heart. Trans. on Medical Imaging 10, 295–306 (1991)CrossRefGoogle Scholar
  15. 15.
    Gupta, S.N., Prince, J.L.: On div-curl regularization for motion estimation in 3-D volumetric imaging. In: ICIP, vol. 1, pp. 929–932 (1996)Google Scholar
  16. 16.
    Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: An imaging-based control approach. Experiments in Fluids 42, 61–78 (2007)CrossRefGoogle Scholar
  17. 17.
    Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Measurement Science and Technology 18, 755–763 (2007)CrossRefGoogle Scholar
  18. 18.
    Huot, E., Herlin, I., Mercier, N., Plotnikov, E.: Estimating apparent motion on satellite acquisitions with a physical dynamic model. In: ICPR, pp. 41–44 (2010)Google Scholar
  19. 19.
    Papadakis, N., Mémin, E.: Variational assimilation of fluid motion from image sequence. SIAM Journal on Imaging Sciences 1, 343–363 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Papadakis, N., Corpetti, T., Mémin, E.: Dynamically consistent optical flow estimation. In: ICCV, pp. 1–7 (2007)Google Scholar
  21. 21.
    McOwen, R.: Partial Differential Equations: Methods and Applications, ch. 4. Prentice Hall (2003)Google Scholar
  22. 22.
    Zhu, C., Byrd, R., Lu, P., Nocedal, J.: L-BFGS-B: a limited memory FORTRAN code for solving bound constrained optimization problems. Technical Report NAM-11, EECS Department, Northwestern University (1994)Google Scholar
  23. 23.
    LeVeque, R.: Numerical Methods for Conservative Laws, 2nd edn. Lectures in Mathematics. ETH Zürich. Birkhaüser Verlag (1992)Google Scholar
  24. 24.
    Hundsdorfer, W., Spee, E.: An efficient horizontal advection scheme for the modeling of global transport of constituents. Monthly Weather Review 123, 3,554–3,564 (1995)Google Scholar
  25. 25.
    Hascoët, L., Pascual, V.: Tapenade 2.1 user’s guide. Technical Report 0300, INRIA (2004)Google Scholar
  26. 26.
    Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: ECCV, pp. 2432–2439 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isabelle Herlin
    • 1
    • 2
  • Dominique Béréziat
    • 3
  • Nicolas Mercier
    • 1
    • 2
  • Sergiy Zhuk
    • 4
  1. 1.INRIALe ChesnayFrance
  2. 2.CEREA, Joint Laboratory ENPC - EDF R&DUniversité Paris-EstMarne la Vallée Cedex 2France
  3. 3.Université Pierre et Marie CurieParisFrance
  4. 4.IBM ResearchDublin Tech. CampusDublinIreland

Personalised recommendations