Advertisement

Computing Longest Common Subsequences with the B-Cell Algorithm

  • Thomas Jansen
  • Christine Zarges
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7597)

Abstract

Computing a longest common subsequence of a number of strings is a classical combinatorial optimisation problem with many applications in computer science and bioinformatics. It is a hard problem in the general case so that the use of heuristics is motivated. Evolutionary algorithms have been reported to be successful heuristics in practice but a theoretical analysis has proven that a large class of evolutionary algorithms using mutation and crossover fail to solve and even approximate the problem efficiently. This was done using hard instances. We reconsider the very same hard instances and prove that the B-cell algorithm outperforms these evolutionary algorithms by far. The advantage stems from the use of contiguous hypermutations. The result is another demonstration that relatively simple artificial immune systems can excel over more complex evolutionary algorithms in the domain of optimisation.

Keywords

Evolutionary Algorithm Problem Instance Candidate Solution Vertex Cover Search Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heurisitcs. World Scientific (2011)Google Scholar
  2. 2.
    Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press (1959)Google Scholar
  3. 3.
    de Castro, L., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proc. of the 4th Congress on Evolutionary Computation (CEC 2002), pp. 699–704. IEEE Press (2002)Google Scholar
  4. 4.
    de Castro, L., Zuben, F.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  5. 5.
    Clark, E., Hone, A., Timmis, J.: A Markov Chain Model of the B-Cell Algorithm. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 318–330. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2001)Google Scholar
  7. 7.
    Cortés, N.C., Coello Coello, C.A.: Multiobjective Optimization Using Ideas from the Clonal Selection Principle. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 158–170. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cutello, V., Nicosia, G., Pavone, M.: Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, D., Niño, F.: Immunological Computation: Theory and Applications. Auerbach (2008)Google Scholar
  10. 10.
    De Jong, K.A.: Evolutionary Computation. A Unified Approach. MIT Press (2006)Google Scholar
  11. 11.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)Google Scholar
  12. 12.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hinkemeyer, B., Julstrom, B.A.: A genetic algorithm for the longest common subsequence problem. In: Proc. of the 8th Annual Genetic and Evolutionary Computation Conf. (GECCO 2006), pp. 609–610. ACM Press (2006)Google Scholar
  14. 14.
    Jansen, T.: Simulated annealing. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 171–196. World Scientific (2011)Google Scholar
  15. 15.
    Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evolutionary Computation 13(4), 413–440 (2005)CrossRefGoogle Scholar
  16. 16.
    Jansen, T., Oliveto, P.S., Zarges, C.: On the Analysis of the Immune-Inspired B-Cell Algorithm for the Vertex Cover Problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Jansen, T., Wegener, I.: On the analysis of evolutionary algorithms — a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jansen, T., Weyland, D.: Analysis of evolutionary algorithms for the longest common subsequence problem. Algorithmica 57, 170–186 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic contiguous hypermutations. Theoretical Computer Science 412(6), 517–533 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Julstrom, B.A., Hinkemeyer, B.: Starting from Scratch: Growing Longest Common Subsequences with Evolution. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 930–938. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kelsey, J., Timmis, J.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)Google Scholar
  24. 24.
    Mousavi, S.R., Tabataba, F.: An improved algorithm for the longest common subsequence problem. Computers & Operations Research 39, 512–520 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Murphy, K., Travers, P., Walport, M.: Janeway’s Immunobiology, 8th edn., Oxford (2011)Google Scholar
  26. 26.
    Tabataba, F.S., Mousavi, S.R.: A hyper-heuristic for the longest common subsequence problem. Computational Biology and Chemistry 36, 42–54 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wang, Q., Pan, M., Shang, Y., Korkin, D.: A fast heuristic search algorithm for finding the longest common subsequence of multiple strings. In: Proc. of the Twenty-Fourth AAAI Conf. on Artificial Intelligence, AAAI 2010 (2010)Google Scholar
  28. 28.
    Witt, C.: Runtime analysis of the (μ+1) EA on simple pseudo-boolean functions. Evolutionary Computation 14(1), 65–86 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas Jansen
    • 1
  • Christine Zarges
    • 2
  1. 1.Department of Computer ScienceUniversity College CorkCorkIreland
  2. 2.Department of Computer ScienceUniversity of WarwickCoventryUK

Personalised recommendations