Towards an Evolutionary Procedure for Reverse-Engineering Biological Networks

  • Alberto Castellini
  • Vincenzo Manca
  • Mauro Zucchelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7597)


Metabolic P systems are a modeling framework for metabolic, regulatory and signaling processes. The synthesis of flux regulation functions from time series of substance concentrations is a key task for reverse-engineering biological systems by MP systems. In this paper we present some important improvements to a technique based on genetic algorithms and multiple linear regression for the synthesis of regulation functions. An accurate analysis of generated functions, for the case study of the mitotic oscillator in early amphibian embryos, shows that some knowledge about the regulation mechanisms of biological processes can be inferred from experimental data using this methodology.


Regulation Function Simulation Error Evolutionary Procedure Primitive Function Hill Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits, 1st edn. Chapman and Hall/CRC (July 2006)Google Scholar
  2. 2.
    Cantone, I., Marucci, L., Iorio, F., Ricci, M.A., Belcastro, V., Bansal, M., Santini, S., di Bernardo, M., di Bernardo, D., Cosma, M.P.: A yeast synthetic network for in vivo assessment of Reverse-Engineering and modeling approaches. Cell 137(1), 172–181 (2009)CrossRefGoogle Scholar
  3. 3.
    Castellini, A., Franco, G., Pagliarini, R.: Data analysis pipeline from laboratory to MP models. Natural Computing 10(1), 55–76 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Castellini, A., Manca, V.: Learning regulation functions of metabolic systems by artificial neural networks. In: Proc. GECCO 2009, pp. 193–200. ACM Publisher, Montreal (2009)CrossRefGoogle Scholar
  5. 5.
    Castellini, A., Manca, V., Zucchelli, M., Busato, M.: A genetic approach for synthesizing metabolic models from time series. In: Proceedings of GECCO 2012, Philadelphia, USA (2012)Google Scholar
  6. 6.
    Di Ventura, B., Lemerle, C., Michalodimitrakis, K., Serrano, L.: From in vivo to in silico biology and back. Nature 443(7111), 527–533 (2006)CrossRefGoogle Scholar
  7. 7.
    Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. PNAS 88(20), 9107–9111 (1991)CrossRefGoogle Scholar
  8. 8.
    Manca, V.: The metabolic algorithm: Principles and applications. Theoretical Computer Science 404, 142–157 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Manca, V.: Fundamentals of metabolic P systems. In: Handbook of Membrane Computing, vol. 19, Oxford University Press (2009)Google Scholar
  10. 10.
    Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems 91(3), 489–498 (2008)CrossRefGoogle Scholar
  11. 11.
    Manca, V., Marchetti, L.: Log-gain stoichiometric stepwise regression for MP systems. Int. J. Found. Comput. Sci. 22(1), 97–106 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Manca, V., Marchetti, L.: Solving Dynamical Inverse Problems by means of Metabolic P Systems. BioSystems 109, 78–86 (2012)CrossRefGoogle Scholar
  13. 13.
    Manca, V., Marchetti, L., Pagliarini, R.: MP modelling of glucose-insulin interactions in the intravenous glucose tolerance test. International Journal of Natural Computing Research 2(3), 13–24 (2011)CrossRefGoogle Scholar
  14. 14.
    Marchetti, L., Manca, V.: A Methodology Based on MP Theory for Gene Expression Analysis. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 300–313. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Mitchell, M.: An introduction to genetic algorithms. MIT Press (1998)Google Scholar
  16. 16.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  17. 17.
    Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, 1st edn. The MIT Press (April 2006)Google Scholar
  18. 18.
    Voit, E., Neves, A.R., Santos, H.: The intricate side of systems biology. PNAS 103(25), 9452–9457 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alberto Castellini
    • 1
  • Vincenzo Manca
    • 1
  • Mauro Zucchelli
    • 1
  1. 1.Dept. of Computer ScienceVerona UniversityVeronaItaly

Personalised recommendations