Advertisement

CSA/IE: Novel Clonal Selection Algorithm with Information Exchange for High Dimensional Global Optimization Problems

  • Zixing Cai
  • Xingbao Liu
  • Xiaoping Ren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7597)

Abstract

In order to increase the diversity of immune algorithm when solving high dimensional global optimization problems, a novel clonal selection algorithm with information exchange (CSA/IE) is proposed. The main characteristics of CSA/IE are clonal expansion and a novel hypermutation strategy. In addition, a simplex crossover operator is introduced to improve the ability of information exchange. Particularly, a novel performance evaluation criterion is constructed in this paper, by which the performance of different population-based algorithms can be compared easily.The experimental results indicate that CSA/IE outperforms that of the conventional clonal selection algorithms and the three DE variants, in terms of the performance evaluation criterion proposed. Finally, the proposed CSA/IE is generalized to optimize some hyper-high dimensional (such as 100~1000 dimensions) unimodal and multimodal test functions, and the results show that the proposed algorithm performs well in terms of the stability and the solution quality.

Keywords

Artificial immune systems Clonal selection algorithm Information exchange Global optimization problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acan, A.: Clonal selection algorithm with operator multiplicity. In: Proceedings of the Congress on Evolutionary Computation, vol. 1- 2, pp. 1909–1915 (2004)Google Scholar
  2. 2.
    Burnet, F.M.: Clonal selection theory of acquired immunity. Vanderbilt Unive. Press (1959)Google Scholar
  3. 3.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  4. 4.
    De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  5. 5.
    Cutello, V., Nicosia, G., Pavone, M.: Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cutello, V., Narzisi, G., Nicosia, G.: An Immunological Algorithm for Global Numerical Optimization. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 284–295. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cutello, V., Krasnogor, G., Pavone, M.: Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator. In: ACM Symposium on Applied Computing Dijon, France, pp. 23–27 (2006)Google Scholar
  8. 8.
    Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm for protein structure prediction on lattice models. IEEE Tran.on Evolutionary Computation 11(1), 101–117 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  10. 10.
    Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation 10, 371–395 (2002)CrossRefGoogle Scholar
  11. 11.
    Dorigo, M.: Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di Milano, Italie (1992)Google Scholar
  12. 12.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of 6th International Symposium. Micro Mach Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  13. 13.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proc. of IEEE Symposium on Research in Security & Privacy, pp. 202–212. IEEE Press (1994)Google Scholar
  14. 14.
    Gao, S.C., Tang, Z., Dai, H., Zhang, J.: An improved clonal selection algorithm and its application to traveling salesman problems. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E90a 12, 2930–2938 (2007)CrossRefGoogle Scholar
  15. 15.
    Gong, M.G., Jiao, L.C., Du, H.F.: Multi-objective immune algorithm with nondominated neighbor-based selection. Evolutionary Computation 16(2), 225–255 (2008)CrossRefGoogle Scholar
  16. 16.
    He, H., Qian, F.: Dynamic hypermutation immune algorithms for global optimization. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms 14, 113–118 (2007)MathSciNetGoogle Scholar
  17. 17.
    Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis. Artificial. Intelligence Review 12(4), 265–319 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International. Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  19. 19.
    Khilwani, N., Prakash, A., Shankar, R., Tiwari, M.K.: Fast clonal algorithm. Engineering Applications of Artificial Intelligence 21(1), 106–128 (2008)CrossRefGoogle Scholar
  20. 20.
    Liu, R.C., Jiao, L.C.: Immune Clonal Strategy Based on the Adaptive Mean Mutation. In: Li, K., Fei, M., Irwin, G.W., Ma, S. (eds.) LSMS 2007. LNCS, vol. 4688, pp. 108–116. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Timmis, J., Edmonds, C.: Assessing the Performance of Two Immune Inspired Algorithms and a Hybrid Genetic Algorithm for Function Optimization. In: Proc. of the Congress on Evolutionary Computation, vol. 1, pp. 1044–1051. IEEE, Potland (2004)Google Scholar
  22. 22.
    Storn, R., Price, K.: Differential evolution-A fast and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, Y., Cai, Z.X., Guo, G.Q., Zhou, Y.R.: Multi-objective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 37(3), 560–575 (2007)CrossRefGoogle Scholar
  24. 24.
    Yang, Z., Tang, K., Yao, X.: Self-adaptive Differential Evolution with Neighborhood Search. IEEE World Congress on Computational Intelligence, 1110–1116 (2008)Google Scholar
  25. 25.
    Yang, X. R., Shen, J. Y., Wang, R.: Artificial immune theory based network intrusion detection system and the algorithms design. In: Proceedings of International Conference on Machine Learning and Cybernetics. Proceedings, vol. 1-4, pp. 73–77 (2002)Google Scholar
  26. 26.
    Yang, Z., He, J., Yao, X.: Making a Difference to Differential Evolution. In: Michalewicz, Z., Siarry, P. (eds.) Advances in Metaheuristics for Hard Optimization, pp. 397–414. Springer (2008)Google Scholar
  27. 27.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)CrossRefGoogle Scholar
  28. 28.
    Zarges, C.: Rigorous Runtime Analysis of Inversely Fitness Proportional Mutation Rates. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 112–122. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zixing Cai
    • 1
  • Xingbao Liu
    • 1
  • Xiaoping Ren
    • 2
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaP.R. China
  2. 2.National Institute of MetrologyBeijingP.R. China

Personalised recommendations