AC-CS: An Immune-Inspired Associative Classification Algorithm

  • Samir A. Mohamed Elsayed
  • Sanguthevar Rajasekaran
  • Reda A. Ammar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7597)


Data mining is the process of discovering patterns from large data sets. One of the branches of data mining is Associative Classification (AC). AC mining is a promising approach that uses association rules discovery techniques to construct association classifiers. However, traditional AC algorithms typically search for all possible association rules to find a representative subset of those rules. Since the search space of such rules may grow exponentially as the support threshold decreases, the rules discovery process can be computationally expensive. One effective way to tackle this problem is to directly find a set of high-stakes association rules that potentially builds a highly accurate classifier. This paper introduces AC-CS, a novel AC algorithm, inspired by the clonal selection of the immune system. The algorithm proceeds in an evolutionary fashion to populate only rules that are likely to yield good classification accuracy. Empirical results on several real datasets show that the approach generates dramatically less rules than traditional AC algorithms. Hence, the proposed approach is indeed significantly more efficient than traditional AC algorithms while achieving a competitive accuracy.


Association Rule Clonal Selection Association Rule Mining Support Threshold Immune Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)Google Scholar
  4. 4.
    Alves, R., Delgado, M., Lopes, H., Freitas, A.: An Artificial Immune System for Fuzzy-Rule Induction in Data Mining. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1011–1020. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, SIGMOD 1998, pp. 85–93. ACM, New York (1998)CrossRefGoogle Scholar
  6. 6.
    Bersini, H., Varela, F.: Hints for adaptive problem solving gleaned from immune networks. In: Parallel Problem Solving from Nature, pp. 343–354 (1991)Google Scholar
  7. 7.
    Castro, L., Timmis, J.: Artificial immune systems as a novel soft computing paradigm. Soft Computing-A Fusion of Foundations, Methodologies and Applications 7(8), 526–544 (2003)Google Scholar
  8. 8.
    Castro, L.N.D., Zuben, F.J.V.: An evolutionary immune network for data clustering. In: Brazilian Symposium on Neural Networks, pp. 84–89 (2000)Google Scholar
  9. 9.
    Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal Selection Algorithms: A Comparative Case Study Using Effective Mutation Potentials. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    De Castro, L., Timmis, J.: Artificial immune systems: a new computational intelligence approach. Springer (2002)Google Scholar
  11. 11.
    De Castro, L., Von Zuben, F.: The clonal selection algorithm with engineering applications. In: Proceedings of GECCO 2000, Workshop on Artificial Immune Systems and Their Applications, vol. 3637 (2000)Google Scholar
  12. 12.
    De Castro, L., Von Zuben, F.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)CrossRefGoogle Scholar
  13. 13.
    Do, T.D., Hui, S.C., Fong, A.C.M., Fong, B.: Associative classification with artificial immune system. IEEE Transactions on Evolutionary Computation 13, 217–228 (2009)CrossRefGoogle Scholar
  14. 14.
    Elsayed, S.A.M., Rajasekaran, S., Ammar, R.A.: An Artificial Immune System Approach to Associative Classification. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 161–171. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Farmer, J., Packard, N., Perelson, A.: The immune system, adaptation, and machine learning. Physica D: Nonlinear Phenomena 22(1-3), 187–204 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202–212. IEEE (1994)Google Scholar
  17. 17.
    Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 229–241. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Gu, F., Feyereisl, J., Oates, R., Reps, J., Greensmith, J., Aickelin, U.: Quiet in Class: Classification, Noise and the Dendritic Cell Algorithm. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 173–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 1–12. ACM, New York (2000)CrossRefGoogle Scholar
  21. 21.
    Houtsma, M., Swami, A.: Set-oriented mining of association rules. In: International Conference on Data Engineering (1993)Google Scholar
  22. 22.
    Ishida, Y.: Fully distributed diagnosis by pdp learning algorithm: towards immune network pdp model. In: 1990 IJCNN International Joint Conference on Neural Networks, pp. 777–782. IEEE (1990)Google Scholar
  23. 23.
    Ji, Z., Dasgupta, D.: Revisiting negative selection algorithms. Evolutionary Computation 15(2), 223–251 (2007)CrossRefGoogle Scholar
  24. 24.
    Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multiple class-association rules. In: IEEE International Conference on Data Mining, pp. 369–376 (2001)Google Scholar
  25. 25.
    Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Knowledge Discovery and Data Mining, pp. 80–86 (1998)Google Scholar
  26. 26.
    Liu, B., Ma, Y., Wong, C.: Classification using association rules: weaknesses and enhancements. In: Data Mining for Scientific Applications, pp. 1–11 (2001)Google Scholar
  27. 27.
    Matzinger, P.: The danger model: a renewed sense of self. Science 296(5566), 301–305 (2002)CrossRefGoogle Scholar
  28. 28.
    Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: hyper-structure mining of frequent patterns in large databases. In: Proceedings IEEE International Conference on Data Mining, ICDM 2001, pp. 441–448 (2001)Google Scholar
  29. 29.
    Quinlan, J.: C4. 5: programs for machine learning. Morgan Kaufmann (1993)Google Scholar
  30. 30.
    Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. Biosystems 55(1-3), 143–150 (2000)CrossRefGoogle Scholar
  31. 31.
    Watkins, A.: Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms. PhD thesis, University of Kent, Computing Laboratory (2005)Google Scholar
  32. 32.
    Watkins, A., Timmis, J.: Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Watkins, A., Timmis, J., Boggess, L.: Artificial immune recognition system (airs): An immune-inspired supervised learning algorithm. Genetic Programming and Evolvable Machines 5(3), 291–317 (2004)CrossRefGoogle Scholar
  34. 34.
    Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 326–335. ACM, New York (2003)CrossRefGoogle Scholar
  35. 35.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Knowledge Discovery and Data Mining, pp. 283–286 (1997)Google Scholar
  36. 36.
    Zheng, H., Du Jiaying, Z., Wang, Y.: Research on vehicle image classifier based on concentration regulating of immune clonal selection. In: Fourth International Conference on Natural Computation, pp. 671–675. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Samir A. Mohamed Elsayed
    • 1
  • Sanguthevar Rajasekaran
    • 1
  • Reda A. Ammar
    • 1
  1. 1.Computer Science DepartmentUniversity of ConnecticutUSA

Personalised recommendations