Vehicle Warm-Up Analysis with Experimental and Co-Simulation Methods

  • Daniel GhebruEmail author
  • Christian Donn
  • Wolfgang Zulehner
  • Heiko Kubach
  • Uwe Wagner
  • Ulrich Spicher
  • Wolfgang Puntigam
  • Klaus Strasser
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 196)


A high accuracy of full-vehicle thermal models are required to predict the vehicle heat-up behaviour at every conceivable combination of driving cycle and ambient air temperature down to −20 °C. Within this work a methodology for modelling the thermal behaviour of an IC-engine is presented. The focus lies on the heat-path beginning with the combustion process followed by heat conduction through the combustion chamber walls and convective heat transfer between engine structure and coolant. The thermal engine model is coupled with other models (HVAC-system, powertrain, etc.) by an independent co-simulation platform in order to describe the virtual vehicle as a whole. Finally, the model validation is performed with two different driving cycles at two different start temperatures. Using the described full-vehicle model the potential of a heat storage system is discussed for several heat-up strategies.


Full-vehicle simulation Thermal engine model Co-simulation Thermal management Warm-up behaviour 



Combustion chamber surface area (m²)


Mean piston speed (m/s)


Specific heat capacity (J/(kgK))


Diameter (m)


Euler number (-)


Viscosity (kg/(ms))


Heat transfer coefficient (coolant-side) (W/(m²K))


Heat transfer coefficient (gas-side) (W/(m²K))


Length (fundamental unit) (m)


Thermal conductivity (W/(mK))


Mass (fundamental unit) (kg)

\( \dot{m} \)

Mass flow rate (kg/s)


Cylinder pressure (bar)


Péclet number (-)


Prandtl number (-)

\( \dot{Q}_{W} \)

Wall heat flow rate (W)

\( \dot{Q}_{HSS} \)

Additional heat flow rate(W)


Reynolds number (-)


Density (kg/m³)


Stanton number (-)


Mean gas temperature (K)


Wall temperature (K)


Time (fundamental unit) (s)

\( \Uptheta \)

Temperature (fundamental unit) (K)


Flow velocity (m/s)


Cylinder volume (m³)


  1. 1.
    Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4(4):345–376CrossRefGoogle Scholar
  2. 2.
    Chmela FG, Orthaber GC (1999) Rate of heat release prediction for direct injection diesel engines based on purely mixing controlled combustion. SAE1999-01-0186Google Scholar
  3. 3.
    Donn C, Zulehner W, Ghebru D, Spicher U, Honzen M (2011) Experimental heat flux analysis of an automotive diesel engine in steady-state operation and during warm-up. SAE2011-24-0067Google Scholar
  4. 4.
    Donn C, Ghebru D, Zulehner W, Wagner U, Spicher U, Honzen M (2012) Influence of operating parameters on the thermal behaviour and energy balance of an automotive diesel engine, FISITA 2012 World automotive congress F2012-A07-014Google Scholar
  5. 5.
    Ghebru D, Donn C, Zulehner W, Spicher U, Puntigam W, Strasser K (2011) Numerical investigation of energy-efficient heat-up strategies considering a comprehensive HVAC-system, VTMS10, institution of mechanical engineersGoogle Scholar
  6. 6.
    Hohenberg G (1979) Advanced approaches for heat transfer calculations, SAE790825Google Scholar
  7. 7.
    Hollenbeck, KJ (1998) A matlab function for numerical inversion of Laplace transforms by the de Hoog algorithmGoogle Scholar
  8. 8.
    Kossel R, Loeffler M, Strupp NC, Tegethoff WJ (2011) Distributed energy system simulation of a vehicle, VTMS 10, institution of mechanical engineersGoogle Scholar
  9. 9.
    Puntigam W, Balic J, Almbauer R, Hager J (2006) Transient co-simulation of comprehensive vehicle models by time depent coupling. SAE2006-01-1604Google Scholar
  10. 10.
    Püschl T, Schulze T, Schütte H (2009) Model-based parameter optimization for in-cylinder pressure based realtime engine models, Aachen colloquium automobile and engine technologyGoogle Scholar
  11. 11.
    Schulze T, Wiedemeier M, Schuette H (2007) Crank angle-based diesel engine modeling for hardware-in-the-loop applications with in-cylinder pressure sensors. SAE2007-01-1303Google Scholar
  12. 12.
    Zapf H (1968) Untersuchung des Wärmeüberganges in einem Viertakt-Dieselmotor während der Ansaug- und Ausschubphase, PhD-Thesis, Technische Universitaet MuenchenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Ghebru
    • 1
    Email author
  • Christian Donn
    • 1
  • Wolfgang Zulehner
    • 1
  • Heiko Kubach
    • 1
  • Uwe Wagner
    • 1
  • Ulrich Spicher
    • 1
  • Wolfgang Puntigam
    • 2
  • Klaus Strasser
    • 2
  1. 1.Karlsruhe Institute of Technology, Institut für KolbenmaschinenKarlsruheGermany
  2. 2.AUDI AGIngolstadtGermany

Personalised recommendations