Advertisement

Script Data for Attribute-Based Recognition of Composite Activities

  • Marcus Rohrbach
  • Michaela Regneri
  • Mykhaylo Andriluka
  • Sikandar Amin
  • Manfred Pinkal
  • Bernt Schiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)

Abstract

State-of-the-art human activity recognition methods build on discriminative learning which requires a representative training set for good performance. This leads to scalability issues for the recognition of large sets of highly diverse activities. In this paper we leverage the fact that many human activities are compositional and that the essential components of the activities can be obtained from textual descriptions or scripts. To share and transfer knowledge between composite activities we model them by a common set of attributes corresponding to basic actions and object participants. This attribute representation allows to incorporate script data that delivers new variations of a composite activity or even to unseen composite activities. In our experiments on 41 composite cooking tasks, we found that script data to successfully capture the high variability of composite activities. We show improvements in a supervised case where training data for all composite cooking tasks is available, but we are also able to recognize unseen composites by just using script data and without any manual video annotation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, H., Kläser, A., Schmid, C., Liu, C.-L.: Action Recognition by Dense Trajectories. In: CVPR (2011)Google Scholar
  2. 2.
    Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: CVPR (2010)Google Scholar
  3. 3.
    Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392–405. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR (2004)Google Scholar
  5. 5.
    Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR (2009)Google Scholar
  6. 6.
    Liu, J.G., Luo, J.B., Shah, M.: Recognizing realistic actions from videos ’in the wild’. In: CVPR (2009)Google Scholar
  7. 7.
    Rodriguez, M.D., Ahmed, J., Shah, M.: Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In: CVPR (2008)Google Scholar
  8. 8.
    Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked keypoints. In: ICCV (2009)Google Scholar
  9. 9.
    Fathi, A., Farhadi, A., Rehg, J.M.: Understanding egocentric activities, cvpr. In: ICCV (2011)Google Scholar
  10. 10.
    Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR (2009)Google Scholar
  11. 11.
    Rohrbach, M., Stark, M., Szarvas, G., Gurevych, I., Schiele, B.: What Helps Where – And Why? Semantic Relatedness for Knowledge Transfer. In: CVPR (2010)Google Scholar
  12. 12.
    Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: CVPR (2011)Google Scholar
  13. 13.
    Rohrbach, M., Amin, S., Andriluka, M., Schiele, B.: A database for fine grained activity detection of cooking activities. In: CVPR (2012)Google Scholar
  14. 14.
    Laptev, I.: On space-time interest points. In: IJCV (2005)Google Scholar
  15. 15.
    Chakraborty, B., Holte, M.B., Moeslund, T.B., Gonzalez, J., Roca, F.X.: A selective spatio-temporal interest point detector for human action recognition in complex scenes. In: ICCV (2011)Google Scholar
  16. 16.
    Gupta, A., Davis, L.S.: Objects in action: An approach for combining action understanding and object perception. In: CVPR (2007)Google Scholar
  17. 17.
    Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.M.: A scalable approach to activity recognition based on object use. In: ICCV (2007)Google Scholar
  18. 18.
    Li, L.J., Su, H., Lim, Y., Fei-Fei, L.: Objects as attributes for scene classification. In: ECCV (2010)Google Scholar
  19. 19.
    Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L., Fei-Fei1, L.: Human action recognition by learning bases of action attributes and parts. In: ICCV (2011)Google Scholar
  20. 20.
    Ferrari, V., Zisserman, A.: Learning visual attributes. In: NIPS (2007)Google Scholar
  21. 21.
    Farhadi, A., Endres, I., Hoiem, D.: Attribute-centric recognition for cross-category generalization. In: CVPR (2010)Google Scholar
  22. 22.
    Fellbaum, C.: WordNet: An Electronical Lexical Database. The MIT Press (1998)Google Scholar
  23. 23.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)Google Scholar
  24. 24.
    Snoek, C., Worring, M., van Gemert, J., Geusebroek, J.M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: ACM Multimedia (2006)Google Scholar
  25. 25.
    Hauptmann, A.G., Christel, M.G., Yan, R.: Video retrieval based on semantic concepts. Proceedings of IEEE 96 (2008)Google Scholar
  26. 26.
    Rohrbach, M., Stark, M., Schiele, B.: Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In: CVPR (2011)Google Scholar
  27. 27.
    Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding (1977)Google Scholar
  28. 28.
    Barr, A., Feigenbaum, E.: The Handbook of Artificial Intelligence, vol. 1. William Kaufman Inc., Los Altos (1981)zbMATHGoogle Scholar
  29. 29.
    Regneri, M., Koller, A., Pinkal, M.: Learning script knowledge with web experiments. In: Proceedings of ACL 2010 (2010)Google Scholar
  30. 30.
    Bloem, J., Regneri, M., Thater, S.: Robust processing of noisy web-collected data. In: Proceedings of KONVENS 2012 (2012)Google Scholar
  31. 31.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. In: Information Processing and Management (1988)Google Scholar
  32. 32.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In: CVPR (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcus Rohrbach
    • 1
  • Michaela Regneri
    • 2
  • Mykhaylo Andriluka
    • 1
  • Sikandar Amin
    • 1
    • 3
  • Manfred Pinkal
    • 2
  • Bernt Schiele
    • 1
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Department of Computational LinguisticsSaarland UniversityGermany
  3. 3.Department of Computer ScienceTechnische Universität MünchenGermany

Personalised recommendations