A Novel Fast Method for L ∞ Problems in Multiview Geometry
Abstract
Optimization using the L ∞ norm is an increasingly important area in multiview geometry. Previous work has shown that globally optimal solutions can be computed reliably using the formulation of generalized fractional programming, in which algorithms solve a sequence of convex problems independently to approximate the optimal L ∞ norm error. We found the sequence of convex problems are highly related and we propose a method to derive a Newton-like step from any given point. In our method, the feasible region of the current involved convex problem is contracted gradually along with the Newton-like steps, and the updated point locates on the boundary of the new feasible region. We propose an effective strategy to make the boundary point become an interior point through one dimension augmentation and relaxation. Results are presented and compared to the state of the art algorithms on simulated and real data for some multiview geometry problems with improved performance on both runtime and Newton-like iterations.
Keywords
Feasible Region Central Path Convex Problem Algebraic Solution Triangulation ProblemReferences
- 1.Hartley, R., Kahl, F.: Optimal Algorithms in Multiview Geometry. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 13–34. Springer, Heidelberg (2007) 1CrossRefGoogle Scholar
- 2.Hartley, R., Schaffalitzky, F.: L ∞ minimization in geometric reconstruction problems. In: CVPR, pp. 504–509 (2004) 2Google Scholar
- 3.Micusik, B., Pflugfelder, R.: Localizing non-overlapping surveillance cameras under the L-infinity norm. In: CVPR, pp. 2895–2901 (2010) 2Google Scholar
- 4.Sim, K., Hartley, R.: Recovering camera motion using L ∞ minimization. In: CVPR, pp. 1230–1237 (2006) 2Google Scholar
- 5.Heller, J., Havlena, M., Pajdla, T., Sugimoto, A.: Structure-from-motion based hand-eye calibration using L ∞ minimization. In: CVPR, pp. 3497–3503 (2011) 2Google Scholar
- 6.Kahl, F.: Multiple view geometry and the L ∞ -norm. In: ICCV, pp. 1002–1009 (2005) 2Google Scholar
- 7.Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. In: ICCV, pp. 986–993 (2005) 2Google Scholar
- 8.Olsson, C., Eriksson, A., Kahl, F.: Efficient optimization for L ∞ -problems using pseudoconvexity. In: ICCV, pp. 1–8 (2007) 2,3Google Scholar
- 9.Dinkelbach, W.: On nonlinear fractional programming. Management Science, 492–498 (1967) 2Google Scholar
- 10.Agarwal, S., Snavely, N., Seitz, S.: Fast algorithms for L ∞ problems in multiview geometry. In: CVPR, pp. 1–8 (2008) 2,3,10,13Google Scholar
- 11.Frenk, J., Schaible, S.: Fractional programming. In: Handbook of Generalized Convexity and Generalized Monotonicity, pp. 335–386 (2005) 2Google Scholar
- 12.Gugat, M.: A fast algorithm for a class of generalized fractional programs. Management Science, 1493–1499 (1996) 2,10Google Scholar
- 13.Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica, 373–395 (1984) 2Google Scholar
- 14.Wright, S.: Primal-dual interior-point methods, vol. 54. SIAM (1997) 2,5,10Google Scholar
- 15.Sturm, J.: Using SeDuMi 1. 02, a Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11–12, 625–653 (1999) 2,10MathSciNetCrossRefGoogle Scholar
- 16.Freund, R., Jarre, F.: An interior-point method for fractional programs with convex constraints. Mathematical Programming 67(1), 407–440 (1994) 2MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Nesterov, Y., Nemirovskii, A.: An interior-point method for generalized linear-fractional programming. Mathematical Programming 69(1), 177–204 (1995) 2MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Seo, Y., Hartley, R.: A fast method to minimize L ∞ error norm for geometric vision problems. In: ICCV, pp. 1–8 (2007) 2Google Scholar
- 19.Li, H.: Efficient reduction of L-infinity geometry problems. In: CVPR, pp. 2695–2702 (2009) 2,3Google Scholar
- 20.Olsson, C., Enqvist, O., Kahl, F.: A polynomial-time bound for matching and registration with outliers. In: CVPR, pp. 1–8 (2008) 2Google Scholar
- 21.Olsson, C., Eriksson, A., Hartley, R.: Outlier removal using duality. In: CVPR, pp. 1450–1457 (2010) 3Google Scholar
- 22.Dai, Y., Li, H., He, M., Shen, C.: Smooth approximation of L ∞ -norm for multi-view geometry. In: Digital Image Computing: Techniques and Applications, pp. 339–346 (2009) 3Google Scholar
- 23.Zach, C., Pollefeys, M.: Practical Methods for Convex Multi-view Reconstruction. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 354–367. Springer, Heidelberg (2010) 3CrossRefGoogle Scholar
- 24.Lee, H., Lee, S., Seo, Y.: Sparse second-order cone programming for 3d reconstruction. In: International Workshop on Advanced Image Technology (2009) 6Google Scholar
- 25.Seo, Y., Lee, H., Lee, S.: Sparse Structures in L-Infinity Norm Minimization for Structure and Motion Reconstruction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 780–793. Springer, Heidelberg (2008) 6CrossRefGoogle Scholar
- 26.Kojima, M., Mizuno, S., Yoshise, A.: A primal-dual interior point algorithm for linear programming. In: Progress in Mathematical Programming: Interior-Point and Related Methods, pp. 29–47. Springer-Verlag New York, Inc. (1988) 10Google Scholar
- 27.Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004) 10Google Scholar