Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields

  • Ian H. Jermyn
  • Sebastian Kurtek
  • Eric Klassen
  • Anuj Srivastava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7576)


In this paper we define a new methodology for shape analysis of parameterized surfaces, where the main issues are: (1) choice of metric for shape comparisons and (2) invariance to reparameterization. We begin by defining a general elastic metric on the space of parameterized surfaces. The main advantages of this metric are twofold. First, it provides a natural interpretation of elastic shape deformations that are being quantified. Second, this metric is invariant under the action of the reparameterization group. We also introduce a novel representation of surfaces termed square root normal fields or SRNFs. This representation is convenient for shape analysis because, under this representation, a reduced version of the general elastic metric becomes the simple \(\ensuremath{\mathbb{L}^2}\) metric. Thus, this transformation greatly simplifies the implementation of our framework. We validate our approach using multiple shape analysis examples for quadrilateral and spherical surfaces. We also compare the current results with those of Kurtek et al. [1]. We show that the proposed method results in more natural shape matchings, and furthermore, has some theoretical advantages over previous methods.


Linear Interpolation Spherical Surface Shape Analysis Surface Graph Riemannian Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: Proc. IEEE Computer Vision and Pattern Recognition, pp. 1625–1632 (2010)Google Scholar
  2. 2.
    Younes, L., Michor, P.W., Shah, J., Mumford, D., Lincei, R.: A metric on shape space with explicit geodesics. Matematica E Applicazioni 19, 25–57 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Analysis and Machine Intelligence 33, 1415–1428 (2011)CrossRefGoogle Scholar
  4. 4.
    Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics LVI, 617–694 (1998)MathSciNetGoogle Scholar
  5. 5.
    Dryden, I.L., Mardia, K.: Statistical Shape Analysis. John Wiley & Son (1998)Google Scholar
  6. 6.
    Malladi, R., Sethian, J., Vemuri, B.: A fast level set based algorithm for topology-independent shape modeling. Journal of Math. Imag. and Vision 6, 269–290 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., Samaras, D.: Ricci flow for 3D shape analysis. In: Proc. IEEE Int. Conf. on Computer Vision (2007)Google Scholar
  8. 8.
    Almhdie, A., Léger, C., Deriche, M., Lédée, R.: 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters 28, 1523–1533 (2007)CrossRefGoogle Scholar
  9. 9.
    Bouix, S., Pruessner, J.C., Collins, D.L., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25, 1077–1089 (2001)CrossRefGoogle Scholar
  10. 10.
    Gorczowski, K., Styner, M., Jeong, J., Marron, J., Piven, J., Hazlett, H., Pizer, S., Gerig, G.: Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Trans. Pattern Analysis and Machine Intelligence 32, 652–666 (2010)CrossRefGoogle Scholar
  11. 11.
    Brechbühler, C., Gerig, G., Kübler, O.: Parameterization of closed surfaces for 3D shape description. Computer Vision and Image Understanding 61, 154–170 (1995)CrossRefGoogle Scholar
  12. 12.
    Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. In: Proc. MICCAI Open Science Workshop (2006)Google Scholar
  13. 13.
    van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Eurographics State-of-the-Art Report (2010)Google Scholar
  14. 14.
    Cates, J., Meyer, M., Fletcher, P., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: Proc. MICCAI Mathematical Foundations of Computational Anatomy, pp. 90–99 (2006)Google Scholar
  15. 15.
    Davies, R., Twining, C., Cootes, T., Taylor, C.: Building 3-d statistical shape models by direct optimization. IEEE Trans. Medical Imaging 29, 961–981 (2010)CrossRefGoogle Scholar
  16. 16.
    Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision 35, 86–102 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Windheuser, T., Schlickewei, U., Schmidt, F.R., Cremers, D.: Geometrically consistent elastic matching of 3d shapes: A linear programming solution. In: Proc. International Conference on Computer Vision, ICCV (2011)Google Scholar
  18. 18.
    Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. In: Proc. of SIGGRAPH (2006)Google Scholar
  19. 19.
    Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans. Medical Imaging 30, 849–858 (2011)CrossRefGoogle Scholar
  20. 20.
    Kurtek, S., Klassen, E., Gore, J., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parametrized surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence (2010)Google Scholar
  21. 21.
    Kurtek, S., Klassen, E., Ding, Z., Avison, M., Srivastava, A.: Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 147–158. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Gu, X., Vemuri, B.C.: Matching 3D Shapes Using 2D Conformal Representations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 771–780. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    DeWitt, B.S.: Quantum Theory of Gravity. I. The Canonical Theory. Physical Review 160, 1113–1148 (1967)zbMATHGoogle Scholar
  24. 24.
    Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calculus of Variations and Partial Diff. Equations 39 (2010)Google Scholar
  25. 25.
    Abe, K., Erbacher, J.: Isometric immersions with the same Gauss map. Mathematische Annalen 215, 197–201 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ebin, D.: The manifold of Riemannian metrics. Proc. Symposia in Pure Mathematics (AMS) 15, 11–40 (1970)MathSciNetGoogle Scholar
  27. 27.
    Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Quarterly Journal of Mathematics 42, 183–202 (1991)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ian H. Jermyn
    • 1
  • Sebastian Kurtek
    • 2
  • Eric Klassen
    • 3
  • Anuj Srivastava
    • 4
  1. 1.Department of Mathematical SciencesDurham UniversityDurhamEngland
  2. 2.Department of StatisticsThe Ohio State UniversityColumbusUSA
  3. 3.Department of MathematicsFlorida State UniversityTallahasseeUSA
  4. 4.Department of StatisticsFlorida State UniversityTallahasseeUSA

Personalised recommendations