Advertisement

Dynamic Context for Tracking behind Occlusions

  • Fei Xiong
  • Octavia I. Camps
  • Mario Sznaier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7576)

Abstract

Tracking objects in the presence of clutter and occlusion remains a challenging problem. Current approaches often rely on a priori target dynamics and/or use nearly rigid image context to determine the target position. In this paper, a novel algorithm is proposed to estimate the location of a target while it is hidden due to occlusion. The main idea behind the algorithm is to use contextual dynamical cues from multiple supporter features which may move with the target, move independently of the target, or remain stationary. These dynamical cues are learned directly from the data without making prior assumptions about the motions of the target and/or the support features. As illustrated through several experiments, the proposed algorithm outperforms state of the art approaches under long occlusions and severe camera motion.

Keywords

dynamics-based tracking occlusion context 

References

  1. 1.
    Ding, T., Sznaier, M., Camps, O.: Receding horizon rank minimization based estimation with applications to visual tracking. In: CDC, pp. 3446–3451 (2008) 2, 4, 7, 10, 12Google Scholar
  2. 2.
    Yang, M., Wu, Y., Hua, G.: Context-aware visual tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 31, 1195–1209 (2009) 2, 3, 4, 10CrossRefGoogle Scholar
  3. 3.
    Grabner, H., Matas, J., Van Gool, L., Cattin, P.: Tracking the invisible: Learning where the object might be. In: CVPR, pp. 1285–1292 (2010) 2, 3, 4, 10, 12Google Scholar
  4. 4.
    Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008) 1Google Scholar
  5. 5.
    Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: ICCV (2009) 1Google Scholar
  6. 6.
    Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: CVPR (2011) 1Google Scholar
  7. 7.
    Beymer, D., Konolige, K.: Real-time tracking of multiple people using continuous detection. In: ICCV (1999) 1Google Scholar
  8. 8.
    Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. IJCV 29, 5–28 (1998) 1CrossRefGoogle Scholar
  9. 9.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: ACC, vol. 3, pp. 1628–1632 (1995) 1Google Scholar
  10. 10.
    North, B., Blake, A., Isard, M., Rittscher, J.: Learning and classification of complex dynamics. IEEE Trans. PAMI 22 (2000) 1Google Scholar
  11. 11.
    Ayazoglu, M., Li, B., Dicle, C., Sznaier, M., Camps, O.: Dynamic subspace-based coordinated multicamera tracking. In: ICCV (2011) 2, 4, 5Google Scholar
  12. 12.
    Cerman, L., Matas, J., Hlaváč, V.: Sputnik Tracker: Having a Companion Improves Robustness of the Tracker. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 291–300. Springer, Heidelberg (2009) 2CrossRefGoogle Scholar
  13. 13.
    Ho, B., Kalman, R.: Effective construction of linear, state-variable models from input/output functions. Regelungstechnik 14, 545–548 (1966) 5zbMATHGoogle Scholar
  14. 14.
    Moonen, M., Moor, B.D., Vandenberghe, L., Vandewalle, J.: On- and off-line identification of linear state space models. Int. J. of Control 49, 219–232 (1989) 5zbMATHGoogle Scholar
  15. 15.
    Fazel, M., Hindi, H., Boyd, S.: A rank minimization heuristic with application to minimum order system approximation. In: ACC, vol. 6, pp. 4734–4739 (2001) 8Google Scholar
  16. 16.
    Fazel, M., Hindi, H., Boyd, S.: Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In: ACC, vol. 3, pp. 2156–2162 (2003) 8Google Scholar
  17. 17.
    Lowe, D.: Object recognition from local scale-invariant features. In: ICCV (1999) 9Google Scholar
  18. 18.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008) 9, http://www.vlfeat.org/
  19. 19.
    Lublinerman, R., Sznaier, M., Camps, O.: Dynamics based robust motion segmentation. In: CVPR, vol. 1, pp. 1176–1184 (2006) 10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fei Xiong
    • 1
  • Octavia I. Camps
    • 1
  • Mario Sznaier
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringNortheastern UniversityBostonUSA

Personalised recommendations