Advertisement

Real-Time Compressive Tracking

  • Kaihua Zhang
  • Lei Zhang
  • Ming-Hsuan Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)

Abstract

It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these mis-aligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

Keywords

Local Binary Pattern Tracking Algorithm Appearance Model Random Projection Restricted Isometry Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. IJCV 38, 63–84 (1998)CrossRefGoogle Scholar
  2. 2.
    Jepson, A., Fleet, D., Maraghi, T.: Robust online appearance models for visual tracking. PAMI 25, 1296–1311 (2003)CrossRefGoogle Scholar
  3. 3.
    Avidan, S.: Support vector tracking. PAMI 26, 1064–1072 (2004)CrossRefGoogle Scholar
  4. 4.
    Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. PAMI 27, 1631–1643 (2005)CrossRefGoogle Scholar
  5. 5.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via online boosting. In: BMVC, pp. 47–56 (2006)Google Scholar
  6. 6.
    Ross, D., Lim, J., Lin, R., Yang, M.-H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)CrossRefGoogle Scholar
  7. 7.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. PAMI 33, 1619–1632 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: CVPR, pp. 1305–1312 (2011)Google Scholar
  10. 10.
    Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. PAMI 33, 2259–2272 (2011)CrossRefGoogle Scholar
  11. 11.
    Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary classifier by structural constraints. In: CVPR, pp. 49–56 (2010)Google Scholar
  12. 12.
    Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Candes, E., Tao, T.: Near optimal signal recovery from random projections and universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406–5425 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. PAMI 31, 210–227 (2009)CrossRefGoogle Scholar
  15. 15.
    Candes, E., Tao, T.: Decoding by linear programing. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci 66, 671–687 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx 28, 253–263 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liu, L., Fieguth, P.: Texture classification from random features. PAMI 34, 574–586 (2012)CrossRefGoogle Scholar
  19. 19.
    Li, P., Hastie, T., Church, K.: Very sparse random projections. In: KDD, pp. 287–296 (2006)Google Scholar
  20. 20.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, pp. 511–518 (2001)Google Scholar
  21. 21.
    Li, S., Zhang, Z.: Floatboost learning and statistical face detection. PAMI 26, 1–12 (2004)CrossRefGoogle Scholar
  22. 22.
    Ng, A., Jordan, M.: On discriminative vs. generative classifier: a comparison of logistic regression and naive bayes. In: NIPS, pp. 841–848 (2002)Google Scholar
  23. 23.
    Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12, 228–235 (1984)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: Transfer learning from unlabeled data. In: ICML (2007)Google Scholar
  25. 25.
    Bingham, E., Mannila, H.: Random projection in dimensionality reduction: Applications to image and text data. In: KDD, pp. 245–250 (2001)Google Scholar
  26. 26.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recogntion. PAMI 28, 2037–2041 (2006)CrossRefGoogle Scholar
  27. 27.
    Leonardis, A., Bischof, H.: Robust recogtion using eigenimages. CVIU 78, 99–118 (2000)Google Scholar
  28. 28.
    Kwon, J., Lee, K.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)Google Scholar
  29. 29.
    Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST Parallel Robust Online Simple Tracking. In: CVPR (2010)Google Scholar
  30. 30.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragements-based tracking using the integral histogram. In: CVPR, pp. 798–805 (2006)Google Scholar
  31. 31.
    Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kaihua Zhang
    • 1
  • Lei Zhang
    • 1
  • Ming-Hsuan Yang
    • 2
  1. 1.Dept. of ComputingThe Hong Kong Polytechnic UniversityHong Kong
  2. 2.Electrical Engineering and Computer ScienceUniversity of California at MercedUSA

Personalised recommendations