Dynamic Programming for Approximate Expansion Algorithm

  • Olga Veksler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)


Expansion algorithm is a popular optimization method for labeling problems. For many common energies, each expansion step can be optimally solved with a min-cut/max flow algorithm. While the observed performance of max-flow for the expansion algorithm is fast, its theoretical time complexity is worse than linear in the number of pixels. Recently, Dynamic Programming (DP) was shown to be useful for 2D labeling problems via a “tiered labeling” algorithm, although the structure of allowed (tiered) is quite restrictive. We show another use of DP in a 2D labeling case. Namely, we use DP for an approximate expansion step. Our expansion-like moves are more limited in the structure than the max-flow expansion moves. In fact, our moves are more restrictive than the tiered labeling structure, but their complexity is linear in the number of pixels, making them extremely efficient in practice. We illustrate the performance of our DP-expansion on the Potts energy, but our algorithm can be used for any pairwise energies. We achieve better efficiency with almost the same energy compared to the max-flow expansion moves.


  1. 1.
    Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. PAMI 26, 1222–1239 (2001)CrossRefGoogle Scholar
  2. 2.
    Wills, J., Agarwal, S., Belongie, S.: What went where. In: CVPR, vol. I, pp. 37–44 (2003)Google Scholar
  3. 3.
    Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Transactions on Graphics 23, 294–302 (2004)CrossRefGoogle Scholar
  4. 4.
    Kwatra, V., Schdl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and video synthesis using graph cuts. SIGGRAPH 2003 22, 277–286 (2003)CrossRefGoogle Scholar
  5. 5.
    Hoiem, D., Rother, C., Winn, J.: 3d layout crf for multi-view object class recognition and segmentation. In: CVPR, pp. 1–8 (2007)Google Scholar
  6. 6.
    Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. IJCV 96, 1–27 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222–1239 (2001)CrossRefGoogle Scholar
  8. 8.
    Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society, Series B 51, 271–279 (1989)Google Scholar
  9. 9.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. PAMI 25, 1333–1336 (2003)CrossRefGoogle Scholar
  10. 10.
    Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary one. Technical Report TUD-FI06-01, Dresden University of Technology (2006)Google Scholar
  11. 11.
    Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts - a review. PAMI 29, 1274–1279 (2007)CrossRefGoogle Scholar
  12. 12.
    Felzenszwalb, P.F., Veksler, O.: Tiered scene labeling with dynamic programming. In: CVPR (2010)Google Scholar
  13. 13.
    Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press (1962)Google Scholar
  14. 14.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)CrossRefGoogle Scholar
  15. 15.
    Amini, A., Weymouth, T., Jain, R.: Using dynamic programming for solving variational problems in vision. PAMI 12, 855–867 (1990)CrossRefGoogle Scholar
  16. 16.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M.F., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. PAMI 30, 1068–1080 (2008)CrossRefGoogle Scholar
  17. 17.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)Google Scholar
  18. 18.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. PAMI 28, 1568–1583 (2006)CrossRefGoogle Scholar
  19. 19.
    Lempitsky, V.S., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random field optimization. PAMI 32, 1392–1405 (2010)CrossRefGoogle Scholar
  20. 20.
    Veksler, O.: Graph cut based optimization for mrfs with truncated convex priors. In: CVPR, pp. 1–8 (2007)Google Scholar
  21. 21.
    Kumar, M.P., Torr, P.H.S.: Improved moves for truncated convex models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 889–896 (2009)Google Scholar
  22. 22.
    Gould, S., Amat, F., Koller, D.: Alphabet soup: A framework for approximate energy minimization. In: CVPR, pp. 903–910 (2009)Google Scholar
  23. 23.
    Carr, P., Hartley, R.: Solving multilabel graph cut problems with multilabel swap. In: DICTA (2009)Google Scholar
  24. 24.
    Vineet, V., Warrell, J., Torr, P.: A tiered move-making algorithm for general pairwise mrfs. In: CVPR (2012)Google Scholar
  25. 25.
    Liu, X., Veksler, O., Samarabandu, J.: Order preserving moves for graph cut based optimization. PAMI (2010)Google Scholar
  26. 26.
    Bai, J., Song, Q., Veksler, O., Wu, X.: Fast dynamic programming for labeling problems with ordering constraints. In: CVPR (2012)Google Scholar
  27. 27.
    Asano, T., Chen, D., Katoh, N., Tokuyama, T.: Efficient algorithms for optimization-based image segmentation. IJCGA 11, 145–166 (2001)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions for single and dynamic mrfs. In: CVPR (2007)Google Scholar
  29. 29.
    Alahari, K., Kohli, P., Torr, P.H.S.: Reduce, reuse & recycle: Efficiently solving multi-label mrfs. In: CVPR (2008)Google Scholar
  30. 30.
    Batra, D., Kohli, P.: Making the right moves: Guiding alpha-expansion using local primal-dual gaps. In: CVPR, pp. 1865–1872 (2011)Google Scholar
  31. 31.
    Kolmogorov, V., Zabih, R.: What energy function can be minimized via graph cuts? PAMI 26, 147–159 (2004)CrossRefGoogle Scholar
  32. 32.
    Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR (1), pp. 511–518 (2001)Google Scholar
  33. 33.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47, 7–42 (2001)CrossRefGoogle Scholar
  34. 34.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR, pp. 195–202 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olga Veksler
    • 1
  1. 1.University of Western OntarioLondonCanada

Personalised recommendations