Advertisement

Action Recognition Using Subtensor Constraint

  • Qiguang Liu
  • Xiaochun Cao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)

Abstract

Human action recognition from videos draws tremendous interest in the past many years. In this work, we first find that the trifocal tensor resides in a twelve dimensional subspace of the original space if the first two views are already matched and the fundamental matrix between them is known, which we refer to as subtensor. Then we use the subtensor to perform the task of action recognition under three views. We find that treating the two template views separately or not considering the correspondence relation already known between the first two views omits a lot of useful information. Experiments and datasets are designed to demonstrate the effectiveness and improved performance of the proposed approach.

Keywords

Action Recognition Dynamic Time Warping Fundamental Matrix Testing Video Testing Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104, 90–126 (2006)Google Scholar
  2. 2.
    Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. PR 36, 585–601 (2003)CrossRefGoogle Scholar
  3. 3.
    Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation. CVIU 115, 224–241 (2011)Google Scholar
  4. 4.
    Ikizler, N., Forsyth, D.A.: Searching video for complex activities with finite state models. In: CVPR, pp. 18–23 (2007)Google Scholar
  5. 5.
    Agarwal, A., Triggs, B.: Recovering 3d human pose from monocular images. PAMI 28, 44–58 (2006)CrossRefGoogle Scholar
  6. 6.
    Peursum, P., Venkatesh, S., West, G.A.W.: Tracking-as-recognition for articulated full-body human motion analysis. In: CVPR, pp. 1–8 (2007)Google Scholar
  7. 7.
    Yilmaz, A., Shah, M.: Recognizing human actions in videos acquired by uncalibrated moving cameras. In: CVPR, pp. 150–157 (2005)Google Scholar
  8. 8.
    Yilmaz, A., Shah, M.: Actions sketch: A novel action representation. In: CVPR, pp. 984–989 (2005)Google Scholar
  9. 9.
    Fathi, A., Mori, G.: Action recognition by learning mid-level motion features. In: CVPR, pp. 24–32 (2008)Google Scholar
  10. 10.
    Schindler, K., Gool, L.J.V.: Action snippets: How many frames does human action recognition require. In: CVPR, pp. 1–8 (2008)Google Scholar
  11. 11.
    Laptev, I.: On space-time interest points. IJCV 64, 107–123 (2005)CrossRefGoogle Scholar
  12. 12.
    Gilbert, A., Illingworth, J., Bowden, R.: Scale Invariant Action Recognition Using Compound Features Mined from Dense Spatio-temporal Corners. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 222–233. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Niebles, J.C., Li, F.F.: A hierarchical model of shape and appearance for human action classification. In: CVPR, pp. 1–8 (2007)Google Scholar
  14. 14.
    Morency, L.P., Quattoni, A., Darrell, T.: Latent-dynamic discriminative models for continuous gesture recognition. In: CVPR, pp. 1–8 (2007)Google Scholar
  15. 15.
    Thurau, C., Hlavác, V.: Pose primitive based human action recognition in videos or still images. In: CVPR, pp. 1–8 (2008)Google Scholar
  16. 16.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. PAMI 29, 2247–2253 (2007)CrossRefGoogle Scholar
  17. 17.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. IJCV 79, 299–318 (2008)CrossRefGoogle Scholar
  18. 18.
    Nowozin, S., Bakir, G.H., Tsuda, K.: Discriminative subsequence mining for action classification. In: ICCV, pp. 1–8 (2007)Google Scholar
  19. 19.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: ACMMM, pp. 357–360 (2007)Google Scholar
  20. 20.
    Parameswaran, V., Chellappa, R.: View invariants for human action recognition. In: CVPR, pp. 613–619 (2003)Google Scholar
  21. 21.
    Campbell, L.W., Becker, D.A., Azarbayejani, A., Bobick, A.F., Pentland, A.: Invariant features for 3-d gesture recognition. In: FG, pp. 157–163 (1996)Google Scholar
  22. 22.
    Holte, M.B., Moeslund, T.B., Fihl, P.: View invariant gesture recognition using the csem swissranger sr-2 camera. IJISTA 5, 295–303 (2008)CrossRefGoogle Scholar
  23. 23.
    Zelnik-manor, L., Irani, M.: Event-based analysis of video. In: CVPR, pp. 123–130 (2001)Google Scholar
  24. 24.
    Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. CVIU 104, 249–257 (2006)Google Scholar
  25. 25.
    Junejo, I.N., Dexter, E., Laptev, I., Pérez, P.: View-independent action recognition from temporal self-similarities. PAMI 33, 172–185 (2011)CrossRefGoogle Scholar
  26. 26.
    Farhadi, A., Tabrizi, M.K.: Learning to Recognize Activities from the Wrong View Point. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 154–166. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions. IJCV 50, 203–226 (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Gritai, A., Sheikh, Y., Rao, C., Shah, M.: Matching trajectories of anatomical landmarks under viewpoint, anthropometric and temporal transforms. IJCV 84, 325–343 (2009)CrossRefGoogle Scholar
  29. 29.
    Shen, Y., Foroosh, H.: View-invariant action recognition using fundamental ratios. In: CVPR, pp. 1–8 (2008)Google Scholar
  30. 30.
    Shen, Y., Foroosh, H.: View-invariant action recognition from point triplets. PAMI 31, 1898–1905 (2009)CrossRefGoogle Scholar
  31. 31.
    ul Haq, A., Gondal, I., Murshed, M.: On dynamic scene geometry for view-invariant action matching. In: CVPR, pp. 3305–3312 (2011)Google Scholar
  32. 32.
    Faugeras, O.D., Papadopoulo, T.: A nonlinear method for estimating the projective geometry of three views. In: ICCV, pp. 477–484 (1998)Google Scholar
  33. 33.
    Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation mocap database hdm05. Technical report CG-2007-2, Universität Bonn (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qiguang Liu
    • 1
  • Xiaochun Cao
    • 1
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations