Advertisement

Elevation Angle from Reflectance Monotonicity: Photometric Stereo for General Isotropic Reflectances

  • Boxin Shi
  • Ping Tan
  • Yasuyuki Matsushita
  • Katsushi Ikeuchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)

Abstract

This paper exploits the monotonicity of general isotropic reflectances for estimating elevation angles of surface normal given the azimuth angles. With an assumption that the reflectance includes at least one lobe that is a monotonic function of the angle between the surface normal and half-vector (bisector of lighting and viewing directions), we prove that elevation angles can be uniquely determined when the surface is observed under varying directional lights densely and uniformly distributed over the hemisphere. We evaluate our method by experiments using synthetic and real data to show its wide applicability, even when the assumption does not strictly hold. By combining an existing method for azimuth angle estimation, our method derives complete surface normal estimates for general isotropic reflectances.

Keywords

Elevation Angle Azimuth Angle Lighting Direction Photometric Stereo Surface Normal Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woodham, R.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 139–144 (1980)Google Scholar
  2. 2.
    Ward, G.: Measuring and modeling anisotropic reflection. Computer Graphics 26, 265–272 (1992)CrossRefGoogle Scholar
  3. 3.
    Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: A stratified photometric stereo approach. In: Proc. of International Conference on Computer Vision, ICCV (2007)Google Scholar
  4. 4.
    Chandraker, M., Ramamoorthi, R.: What an image reveals about material reflectance. In: Proc. of International Conference on Computer Vision, ICCV (2011)Google Scholar
  5. 5.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. In: ACM Trans. on Graph (Proc. of SIGGRAPH) (2003)Google Scholar
  6. 6.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1239–1252 (2003)CrossRefGoogle Scholar
  7. 7.
    Mukaigawa, Y., Ishii, Y., Shakunaga, T.: Analysis of photometric factors based on photometric linearization. Journal of the Optical Society of America 24, 3326–3334 (2007)CrossRefGoogle Scholar
  8. 8.
    Miyazaki, D., Hara, K., Ikeuchi, K.: Median photometric stereo as applied to the segonko tumulus and museum objects. International Journal of Computer Vision 86, 229–242 (2010)CrossRefGoogle Scholar
  9. 9.
    Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 703–717. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Wu, T., Tang, C.: Photometric stereo via expectation maximization. IEEE Trans. Pattern Anal. Mach. Intell. 32, 546–560 (2010)CrossRefGoogle Scholar
  11. 11.
    Georghiades, A.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: Proc. of International Conference on Computer Vision, ICCV (2003)Google Scholar
  12. 12.
    Torrance, K., Sparrow, E.: Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 1105–1114 (1967)CrossRefGoogle Scholar
  13. 13.
    Goldman, D., Curless, B., Hertzmann, A., Seitz, S.: Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1060–1071 (2010)CrossRefGoogle Scholar
  14. 14.
    Sato, I., Okabe, T., Yu, Q., Sato, Y.: Shape reconstruction based on similarity in radiance changes under varying illumination. In: Proc. of International Conference on Computer Vision, ICCV (2007)Google Scholar
  15. 15.
    Okabe, T., Sato, I., Sato, Y.: Attached shadow coding: estimating surface normals from shadows under unknown reflectance and lighting conditions. In: Proc. of International Conference on Computer Vision, ICCV (2009)Google Scholar
  16. 16.
    Higo, T., Matsushita, Y., Ikeuchi, K.: Consensus photometric stereo. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2010)Google Scholar
  17. 17.
    Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)Google Scholar
  18. 18.
    Tan, P., Quan, L., Zickler, T.: The geometry of reflectance symmetries. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2506–2520 (2011)CrossRefGoogle Scholar
  19. 19.
    Chandraker, M., Bai, J., Ramamoorthi, R.: A theory of photometric reconstruction for unknown isotropic reflectances. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)Google Scholar
  20. 20.
    Shi, B., Tan, P., Matsushita, Y., Ikeuchi, K.: A biquadratic reflectance model for radiometric image analysis. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)Google Scholar
  21. 21.
    Cook, R., Torrance, K.: A reflectance model for computer graphics. ACM Trans. on Graph. 1, 7–24 (1982)CrossRefGoogle Scholar
  22. 22.
    Kovesi, P.: Shapelets correlated with surface normals produce surfaces. In: Proc. of International Conference on Computer Vision, ICCV (2005)Google Scholar
  23. 23.
    Einarsson, P., et al.: Relighting human locomotion with flowed reflectance fields. In: Proc. of Eurographics Symposium on Rendering (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Boxin Shi
    • 1
  • Ping Tan
    • 2
  • Yasuyuki Matsushita
    • 3
  • Katsushi Ikeuchi
    • 1
  1. 1.The University of TokyoJapan
  2. 2.National University of SingaporeSingapore
  3. 3.Microsoft Research AsiaChina

Personalised recommendations