Advertisement

On Tensor-Based PDEs and Their Corresponding Variational Formulations with Application to Color Image Denoising

  • Freddie Åström
  • George Baravdish
  • Michael Felsberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)

Abstract

The case when a partial differential equation (PDE) can be considered as an Euler-Lagrange (E-L) equation of an energy functional, consisting of a data term and a smoothness term is investigated. We show the necessary conditions for a PDE to be the E-L equation for a corresponding functional. This energy functional is applied to a color image denoising problem and it is shown that the method compares favorably to current state-of-the-art color image denoising techniques.

Keywords

Color Image Variational Formulation Image Structure Image Denoising Outer Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  2. 2.
    Weickert, J.: Anisotropic Diffusion In Image Processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)MATHGoogle Scholar
  3. 3.
    Weickert, J.: Coherence-enhancing diffusion of colour images. Image and Vision Computing 17, 201–212 (1999)CrossRefGoogle Scholar
  4. 4.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Processing 7, 310–318 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Renner, A.I.: Anisotropic Diffusion in Riemannian Colour Space. PhD thesis, Ruprecht-Kars-Universität, Heidelberg (2003)Google Scholar
  6. 6.
    Tang, B., Sapiro, G., Caselles, V.: Color image enhancement via chromaticity diffusion. IEEE Trans. Image Processing 10, 701–707 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Åström, F., Felsberg, M., Lenz, R.: Color Persistent Anisotropic Diffusion of Images. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 262–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Lenz, R., Carmona, P.L.: Hierarchical s(3)-coding of rgb histograms. Selected papers from VISAPP 2009, vol. 68, pp. 188–200. Springer (2010)Google Scholar
  9. 9.
    Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. IJCV 19, 57–91 (1996)CrossRefGoogle Scholar
  10. 10.
    Scharr, H., Black, M., Haussecker, H.: Image statistics and anisotropic diffusion. In: Ninth IEEE ICCV, vol. 2, pp. 840–847 (2003)Google Scholar
  11. 11.
    Krajsek, K., Scharr, H.: Diffusion filtering without parameter tuning: Models and inference tools. In: CVPR, pp. 2536–2543 (2010)Google Scholar
  12. 12.
    Baravdish, G., Svensson, O.: Image reconstruction with p(x)-parabolic equation. In: 7th ICIPE, Orlando Florida (2011)Google Scholar
  13. 13.
    Felsberg, M.: Autocorrelation-driven diffusion filtering. IEEE Trans. Image Processing 20, 1797–1806 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In: IEEE International Conference on Image Processing, pp. 313–316 (2007)Google Scholar
  15. 15.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission, Workshop, Interlaken, pp. 149–155 (1987)Google Scholar
  16. 16.
    Weickert, J.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. VCIR 13, 103–118 (2002)Google Scholar
  17. 17.
    Förstner, W.: Image preprocessing for feature extraction in digital intensity, color and range images. In: Geomatic Method for the Analysis of Data in the Earth Sciences. LNES, vol. 95, pp. 165–189 (2000)Google Scholar
  18. 18.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. ICCV, vol. 2, pp. 416–423 (2001)Google Scholar
  19. 19.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing 13, 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Freddie Åström
    • 1
    • 2
  • George Baravdish
    • 3
  • Michael Felsberg
    • 1
    • 2
  1. 1.Computer Vision Laboratory, Department of E.E.Linköping UniversitySweden
  2. 2.Center for Medical Image Science and Visualization (CMIV)Linköping UniversitySweden
  3. 3.Department of Science and TechnologyLinköping UniversitySweden

Personalised recommendations