Advertisement

Inverse Rendering of Faces on a Cloudy Day

  • Oswald Aldrian
  • William A. P. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)

Abstract

In this paper we consider the problem of inverse rendering faces under unknown environment illumination using a morphable model. In contrast to previous approaches, we account for global illumination effects by incorporating statistical models for ambient occlusion and bent normals into our image formation model. We show that solving for ambient occlusion and bent normal parameters as part of the fitting process improves the accuracy of the estimated texture map and illumination environment. We present results on challenging data, rendered under complex natural illumination with both specular reflectance and occlusion of the illumination environment.

Keywords

Principal Component Analysis Model Global Illumination Morphable Model Ambient Occlusion Illumination Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 218–233 (2003)CrossRefGoogle Scholar
  2. 2.
    Langer, M.S., Zucker, S.W.: Shape from shading on a cloudy day. JOSA-A 11, 467–478 (1994)CrossRefGoogle Scholar
  3. 3.
    Langer, M.S., Büthoff, H.H.: Depth discrimination from shading under diffuse lighting (2000)Google Scholar
  4. 4.
    Prados, E., Jindal, N., Soatto, S.: A non-local approach to shape from ambient shading. In: Proc. IEEE Intl. Conf. on Scale Space and Variational Methods in Computer Vision, pp. 696–708. Springer (2009)Google Scholar
  5. 5.
    Zhukov, S., Iones, A., Kronin, F.: An ambient light illumination model. In: Rendering Techniques, Proceedings of the Eurographics Workshop. Springer (1998)Google Scholar
  6. 6.
    Landis, H.: Production-ready global illumination. Siggraph Course Notes 16 (2002)Google Scholar
  7. 7.
    Aldrian, O., Smith, W.A.P.: A linear approach of 3D face shape and texture recovery using a 3D morphable model. In: Proceedings of the British Machine Vision Conference, pp. 75.1–75.10. BMVA Press (2010)Google Scholar
  8. 8.
    Aldrian, O., Smith, W.A.P.: Inverse rendering with a morphable model: A multilinear approach. In: Proceedings of the British Machine Vision Conference, pp. 88.1–88.10. BMVA Press (2011)Google Scholar
  9. 9.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proc. SIGGRAPH, pp. 187–194 (1999)Google Scholar
  10. 10.
    Fletcher, P.T., Joshi, S., Lu, C., Pizer, S.M.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23, 995–1005 (2004)CrossRefGoogle Scholar
  11. 11.
    Smith, W.A.P., Hancock, E.R.: Recovering facial shape using a statistical model of surface normal direction. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1914–1930 (2006)CrossRefGoogle Scholar
  12. 12.
    Visual Computing Laboratory, Institute of the National Research Council of Italy (Meshlab), http://meshlab.sourceforge.net/
  13. 13.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B 61, 611–622 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. In: Adaptive Computation and Machine Learning. MIT Press (2006)Google Scholar
  15. 15.
    Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: Proc. IEEE Intl. Conf. on Advanced Video and Signal based Surveillance (2009)Google Scholar
  16. 16.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann. Elsevier Science (2010)Google Scholar
  17. 17.
    University of Southern California: High-resolution light probe image gallery (2011), http://gl.ict.usc.edu/Data/HighResProbes

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oswald Aldrian
    • 1
  • William A. P. Smith
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations