Advertisement

Scene Aligned Pooling for Complex Video Recognition

  • Liangliang Cao
  • Yadong Mu
  • Apostol Natsev
  • Shih-Fu Chang
  • Gang Hua
  • John R. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7573)

Abstract

Real-world videos often contain dynamic backgrounds and evolving people activities, especially for those web videos generated by users in unconstrained scenarios. This paper proposes a new visual representation, namely scene aligned pooling, for the task of event recognition in complex videos. Based on the observation that a video clip is often composed with shots of different scenes, the key idea of scene aligned pooling is to decompose any video features into concurrent scene components, and to construct classification models adaptive to different scenes. The experiments on two large scale real-world datasets including the TRECVID Multimedia Event Detection 2011 and the Human Motion Recognition Databases (HMDB) show that our new visual representation can consistently improve various kinds of visual features such as different low-level color and texture features, or middle-level histogram of local descriptors such as SIFT, or space-time interest points, and high level semantic model features, by a significant margin. For example, we improve the-state-of-the-art accuracy on HMDB dataset by 20% in terms of accuracy.

Keywords

Local Binary Pattern Vector Quantization Sift Feature Video Event Wedding Ceremony 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: ICPR (2004)Google Scholar
  2. 2.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV (2005)Google Scholar
  3. 3.
    Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos ”in the wild”. In: CVPR (2009)Google Scholar
  4. 4.
    Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV, pp. 726–733 (2003)Google Scholar
  5. 5.
    Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment. Nature 392, 598–601 (1998)CrossRefGoogle Scholar
  6. 6.
    Friedman, A.: Framing pictures: The role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology 108, 316–355 (1979)CrossRefGoogle Scholar
  7. 7.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324 (1998)CrossRefGoogle Scholar
  8. 8.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. IJCV 79, 299–318 (2008)CrossRefGoogle Scholar
  9. 9.
    Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: IEEE International Workshop on VS-PETS (2005)Google Scholar
  10. 10.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)Google Scholar
  11. 11.
    Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR (2010)Google Scholar
  12. 12.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear pyramid matching using sparse coding for image classification. In: CVPR (2009)Google Scholar
  13. 13.
    Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)Google Scholar
  14. 14.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, vol. 2, pp. 2169–2178 (2006)Google Scholar
  15. 15.
    Boureau, Y., Le Roux, N., Bach, F., Ponce, J., LeCun, Y.: Ask the locals: multi-way local pooling for image recognition. In: ICCV (2011)Google Scholar
  16. 16.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42 (2004)Google Scholar
  17. 17.
    Fei-Fei, L., Perona, P.: A bayesian hierarchy model for learning natural scene categories. In: CVPR (2005)Google Scholar
  18. 18.
    Russell, B., Torralba, A., Liu, C., Fergus, R., Freeman, W.T.: Object recognition by scene alignment. In: NIPS (2007)Google Scholar
  19. 19.
    Boutell, M., Luo, J., Brown, C.M.: Improved semantic region labeling based on scene context. In: ICME (2005)Google Scholar
  20. 20.
    Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: ICCV (2007)Google Scholar
  21. 21.
    Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR (2009)Google Scholar
  22. 22.
    Kimeldorf, G., Wahba, G.: Some results on tchebychefan spline functions. Journal of Mathematical Analysis and Applications 33, 82–95 (1971)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu, H., Hsieh, C., Chang, K., Lin, C.: Large linear classification when data cannot fit in memory. In: Proceedings of ACM SIGKDD, pp. 833–842. ACM (2010)Google Scholar
  24. 24.
    Xiao, J., Haysy, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: CVPR (2010)Google Scholar
  25. 25.
    Zhang, B., Hsu, M., Dayal, U.: K-harmonic means-a data clustering algorithm. Hewlett-Packard Labs Technical Report HPL-1999-124 (1999)Google Scholar
  26. 26.
    Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)zbMATHGoogle Scholar
  27. 27.
    Cao, L., Chang, S.F., Codella, N., Cotton, C., Ellis, D., Gong, L., Hill, M., Huang, G., Kender, J., Merler, M., Mu, Y., Natseve, A., Smith, J.R.: Ibm research and columbia university trecvid-2011 multimedia event detection (med) systems. In: NIST TRECVID Workshop (2011)Google Scholar
  28. 28.
    Natsev, A., Naphade, M.R., Smith, J.R.: Semantic representation, search and mining of multimedia content. In: ACM KDD, pp. 641–646 (2004)Google Scholar
  29. 29.
    Merler, M., Bert Huang, L.X., Hua, G., Natsev, A.: Semantic model vectors for complex video event recognition. IEEE Transactions on Multimedia (2011)Google Scholar
  30. 30.
    Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: A large video database for human motion recognition. In: ICCV (2011)Google Scholar
  31. 31.
    Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: ICCV (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Liangliang Cao
    • 1
  • Yadong Mu
    • 2
  • Apostol Natsev
    • 3
  • Shih-Fu Chang
    • 2
  • Gang Hua
    • 4
  • John R. Smith
    • 1
  1. 1.IBM T. J. Watson Research CenterUSA
  2. 2.Dept. Electrical EngineeringColumbia UniversityUSA
  3. 3.Google ResearchUSA
  4. 4.Dept. Computer ScienceStevens Institute of TechnologyUSA

Personalised recommendations