Large Scale Visual Geo-Localization of Images in Mountainous Terrain

  • Georges Baatz
  • Olivier Saurer
  • Kevin Köser
  • Marc Pollefeys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7573)


Given a picture taken somewhere in the world, automatic geo-localization of that image is a task that would be extremely useful e.g. for historical and forensic sciences, documentation purposes, organization of the world’s photo material and also intelligence applications. While tremendous progress has been made over the last years in visual location recognition within a single city, localization in natural environments is much more difficult, since vegetation, illumination, seasonal changes make appearance-only approaches impractical. In this work, we target mountainous terrain and use digital elevation models to extract representations for fast visual database lookup. We propose an automated approach for very large scale visual localization that can efficiently exploit visual information (contours) and geometric constraints (consistent orientation) at the same time. We validate the system on the scale of a whole country (Switzerland, 40 000km2) using a new dataset of more than 200 landscape query pictures with ground truth.


Digital Elevation Model Visual Word Visible Horizon Query Image Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–7 (2007)Google Scholar
  2. 2.
    Chen, D., Baatz, G., Köser, K., Tsai, S., Vedantham, R., Pylvanainen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B., Grzeszczuk, R.: City-scale landmark identification on mobile devices. In: CVPR (2011)Google Scholar
  3. 3.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. ICCV 2003, vol. 2, pp. 1470–1477 (2003)Google Scholar
  4. 4.
    Woo, J., Son, K., Li, T., Kim, G.S., Kweon, I.S.: Vision-based uav navigation in mountain area. In: MVA, pp. 236–239 (2007)Google Scholar
  5. 5.
    Stein, F., Medioni, G.: Map-based localization using the panoramic horizon. IEEE Transactions on Robotics and Automation 11, 892–896 (1995)CrossRefGoogle Scholar
  6. 6.
    Baatz, G., Köser, K., Chen, D., Grzeszczuk, R., Pollefeys, M.: Leveraging 3d city models for rotation invariant place-of-interest recognition. IJCV, Special Issue on Mobile Vision 96 (2012)Google Scholar
  7. 7.
    Li, Y., Snavely, N., Huttenlocher, D.P.: Location Recognition Using Prioritized Feature Matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Talluri, R., Aggarwal, J.: Position estimation for an autonomous mobile robot in an outdoor environment. Transact. Robotics and Automation 8, 573–584 (1992)CrossRefGoogle Scholar
  9. 9.
    Thompson, W.B., Henderson, T.C., Colvin, T.L., Dick, L.B., Valiquette, C.M.: Vision-based localization. In: Image Understanding Workshop, pp. 491–498 (1993)Google Scholar
  10. 10.
    Cozman, F., Krotkov, E.: Position estimation from outdoor visual landmarks for teleoperation of lunar rovers. In: WACV 1996, pp. 156–161 (1996)Google Scholar
  11. 11.
    Naval, P.C., Mukunoki, M., Minoh, M., Ikeda, K.: Estimating camera position and orientation from geographical map and mountain image. In: 38th Pattern Sensing Group Research Meeting, Soc. of Instrument and Control Engineers, pp. 9–16 (1997)Google Scholar
  12. 12.
    Cozman, F.: Decision Making Based on Convex Sets of Probability Distributions: Quasi-Bayesian Networks and Outdoor Visual Position Estimation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997)Google Scholar
  13. 13.
    Ramalingam, S., Bouaziz, S., Sturm, P., Brand, M.: Skyline2gps: Localization in urban canyons using omni-skylines. In: IROS 2010, pp. 3816–3823 (2010)Google Scholar
  14. 14.
    Baboud, L., Cadík, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain alignment for the annotation of mountain pictures. In: CVPR, pp. 41–48 (2011)Google Scholar
  15. 15.
    Hays, J., Efros, A.A.: im2gps: estimating geographic information from a single image. In: Proceedings of CVPR 2008 (2008)Google Scholar
  16. 16.
    Lalonde, J.F., Narasimhan, S.G., Efros, A.A.: What do the sun and the sky tell us about the camera? International Journal on Computer Vision 88, 24–51 (2010)CrossRefGoogle Scholar
  17. 17.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74, 59–73 (2007)CrossRefGoogle Scholar
  18. 18.
    Luo, J., Etz, S.: A physics-motivated approach to detecting sky in photographs. In: Proc. ICPR., vol. 1, pp. 155–158 (2002)Google Scholar
  19. 19.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 2004 26, 530–549 (2004)Google Scholar
  20. 20.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive Image Segmentation Using an Adaptive GMMRF Model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Lie, W.N., Lin, T.C.I., Lin, T.C., Hung, K.S.: A robust dynamic programming algorithm to extract skyline in images for navigation. Pattern Recognition Letters 26, 221–230 (2005)CrossRefGoogle Scholar
  22. 22.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: Computer Vision and Pattern Recognition, pp. 1956–1963 (2009)Google Scholar
  23. 23.
    Manay, S., Cremers, D., Hong, B.W., Yezzi, A., Soatto, S.: Integral invariants for shape matching. Pattern Analysis and Machine Intelligence (2006)Google Scholar
  24. 24.
    Yang, M., Kpalma, K., Ronsin, J.: A Survey of Shape Feature Extraction Techniques. In: Yin, P.Y. (ed.) Pattern Recognition, pp. 43–90. IN-TECH (2008)Google Scholar
  25. 25.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  26. 26.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2), pp. 2161–2168. IEEE Computer Society (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georges Baatz
    • 1
  • Olivier Saurer
    • 1
  • Kevin Köser
    • 1
  • Marc Pollefeys
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations