Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach

  • Mehrtash T. Harandi
  • Conrad Sanderson
  • Richard Hartley
  • Brian C. Lovell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7573)

Abstract

Recent advances suggest that a wide range of computer vision problems can be addressed more appropriately by considering non-Euclidean geometry. This paper tackles the problem of sparse coding and dictionary learning in the space of symmetric positive definite matrices, which form a Riemannian manifold. With the aid of the recently introduced Stein kernel (related to a symmetric version of Bregman matrix divergence), we propose to perform sparse coding by embedding Riemannian manifolds into reproducing kernel Hilbert spaces. This leads to a convex and kernel version of the Lasso problem, which can be solved efficiently. We furthermore propose an algorithm for learning a Riemannian dictionary (used for sparse coding), closely tied to the Stein kernel. Experiments on several classification tasks (face recognition, texture classification, person re-identification) show that the proposed sparse coding approach achieves notable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as tensor sparse coding, Riemannian locality preserving projection, and symmetry-driven accumulation of local features.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer (2010)Google Scholar
  2. 2.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 31(2), 210–227 (2009)CrossRefGoogle Scholar
  3. 3.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. Pattern Analysis and Machine Intelligence 30(10), 1713–1727 (2008)CrossRefGoogle Scholar
  4. 4.
    Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision 25(1), 127–154 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lui, Y.M.: Advances in matrix manifolds for computer vision. Image and Vision Computing 30(6–7), 380–388 (2012)CrossRefGoogle Scholar
  6. 6.
    Guo, K., Ishwar, P., Konrad, J.: Action recognition using sparse representation on covariance manifolds of optical flow. In: IEEE Conf. Advanced Video and Signal Based Surveillance, pp. 188–195 (2010)Google Scholar
  7. 7.
    Yuan, C., Hu, W., Li, X., Maybank, S., Luo, G.: Human Action Recognition under Log-Euclidean Riemannian Metric. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part I. LNCS, vol. 5994, pp. 343–353. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Pang, Y., Yuan, Y., Li, X.: Gabor-based region covariance matrices for face recognition. IEEE Transactions on Circuits and Systems for Video Technology 18(7), 989–993 (2008)CrossRefGoogle Scholar
  9. 9.
    Sivalingam, R., Boley, D., Morellas, V., Papanikolopoulos, N.: Tensor Sparse Coding for Region Covariances. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 722–735. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Harandi, M.T., Sanderson, C., Wiliem, A., Lovell, B.C.: Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures. In: IEEE Workshop on the Applications of Computer Vision (WACV), pp. 433–439 (2012)Google Scholar
  11. 11.
    Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S., Zhang, Z.: Single and multiple object tracking using log-Euclidean Riemannian subspace and block-division appearance model. IEEE Trans. Pattern Analysis and Machine Intelligence (in press) doi:10.1109/TPAMI.2012.42Google Scholar
  12. 12.
    Bhatia, R.: Positive Definite Matrices. Princeton University Press (2007)Google Scholar
  13. 13.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)Google Scholar
  14. 14.
    Sra, S., Cherian, A.: Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 318–332. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Kulis, B., Sustik, M.A., Dhillon, I.S.: Low-rank kernel learning with Bregman matrix divergences. Journal of Machine Learning Reseach 10, 341–376 (2009)MATHMathSciNetGoogle Scholar
  16. 16.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Sra, S.: Positive definite matrices and the symmetric Stein divergence. Preprint: (arXiv:1110.1773) (2012)Google Scholar
  18. 18.
    Yang, M., Zhang, L.: Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Thompson, A.C.: On certain contraction mappings in a partially ordered vector space. Proceedings of the American Mathematical Society 14, 438–443 (1963)MATHMathSciNetGoogle Scholar
  20. 20.
    Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: Concepts and algorithms. Journal of Machine Learning Research 10, 747–776 (2009)MATHMathSciNetGoogle Scholar
  21. 21.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (April 2011), http://cvxr.com/cvx/
  22. 22.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)Google Scholar
  23. 23.
    Wong, Y., Harandi, M.T., Sanderson, C., Lovell, B.C.: On robust biometric identity verification via sparse encoding of faces: holistic vs local approaches. In: IEEE International Joint Conference on Neural Networks, pp. 1762–1769 (2012)Google Scholar
  24. 24.
    Goh, A., Vidal, R.: Clustering and dimensionality reduction on Riemannian manifolds. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–7 (2008)Google Scholar
  25. 25.
    Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  26. 26.
    Lee, T.S.: Image representation using 2d Gabor wavelets. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 959–971 (1996)CrossRefGoogle Scholar
  27. 27.
    Randen, T., Husøy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)CrossRefGoogle Scholar
  28. 28.
    Ess, A., Leibe, B., Van Gool, L.: Depth and appearance for mobile scene analysis. In: Int. Conf. Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  29. 29.
    Bazzani, L., Cristani, M., Perina, A., Farenzena, M., Murino, V.: Multiple-shot person re-identification by HPE signature. In: Int. Conf. Pattern Recognition, pp. 1413–1416 (2010)Google Scholar
  30. 30.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 2360–2367 (2010)Google Scholar
  31. 31.
    Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. In: Brazilian Symposium on Computer Graphics and Image Processing, pp. 322–329 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mehrtash T. Harandi
    • 1
    • 2
  • Conrad Sanderson
    • 1
    • 2
  • Richard Hartley
    • 3
    • 4
  • Brian C. Lovell
    • 1
    • 2
  1. 1.NICTASt LuciaAustralia
  2. 2.School of ITEEUniversity of QueenslandAustralia
  3. 3.NICTACanberraAustralia
  4. 4.Australian National UniversityCanberraAustralia

Personalised recommendations