Part of the Engineering Materials book series (ENG.MAT.)


The development of high interstitial stainless austenitic steels (HIS) is aimed at a production without costly pressure or powder metallurgy as required by some high nitrogen steels (HNS). At a C + N content between 0.8 and 1.1 mass % the strength level is to be raised considerably above that of standard low interstitial grades. To this avail a multiscale investigation covers the electron structure, microstructure, constitution, properties and manufacturing of new HIS.


  1. 1.
    Gavriljuk VG, Berns H (1999) High Nitrogen steel. Springer, BerlinGoogle Scholar
  2. 2.
    Schaeffler AL (1949) Constitutional diagram for stainless steel weld metal. Metal progress 56:680–680BGoogle Scholar
  3. 3.
    Shanina BD, Gavriljuk VG, Berns H, Schmalt F (2002) Concept of a new high-strength austenitic stainless steel. Steel Res 73:105–113Google Scholar
  4. 4.
    Schmalt F, Berns H, Gavriljuk VG (2004) Mechanical properties of a stainless austenitic CrMnCN steel, Steel Grips 2. Suppl High Nitrogen Steels 2004:437–446Google Scholar
  5. 5.
    Schmalt F (2004) Nutzung der Löslichkeit von C + N in nichtrostenden Stählen, doctoral thesis Ruhr University Bochum, see also Fortschr. Ber. (2005) VDI 5-702, VDI Verlag, DüsseldorfGoogle Scholar
  6. 6.
    Gavriljuk VG, Berns H (1999) Precipitates in tempered stainless martensitic steels alloyed with nitrogen, carbon or both, Trans Tech Publ. Zürich Mat Sci Forum 318–320:71–80CrossRefGoogle Scholar
  7. 7.
    Bernauer J, Speidel MO (2003) Effects of carbon in high-nitrogen corrosion-resistant austenitic steels. In: Speidel MO, Kowanda C, Diener M (eds) Proceeding HNS 2003, vdf Hochschulverlag AG, ETH Zürich, pp 159–168Google Scholar
  8. 8.
    Bernauer J, Saller G, Speidel MOl (2004) Combined influence of carbon and nitrogen on the mechanical and corrosion properties of Cr-Mn steel grades, Steel Grips 2, Suppl High Nitrogen Steels, pp 529–537Google Scholar
  9. 9.
    Bernauer J (2004) Einfluss von Kohlenstoff als Legierungselement in stickstofflegierten Chrom—Mangan Stählen, doctoral thesis ETH Zürich, No. 15457Google Scholar
  10. 10.
    Müller R, Weintz R (1998) Ventilwerkstoffe für Verbrennungsmotoren, Materialwiss. u. Werkstofftechn 29:97–130Google Scholar
  11. 11.
    Bonaziz O, Allain S, Scott CD, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steel: a review of the microstructure properties relationships, Current Opinions in Sol. State Mat Sci 15:141–168CrossRefGoogle Scholar
  12. 12.
    Mujica Roncery L, Weber S, Theisen W (2010) Development of Mn-Cr-(C-N) corrosion resistant twinning induced plasticity steel: Thermodynamic and diffusion calculations, production, and characterization. Metall Mat Trans 41A(10):2471–2479CrossRefGoogle Scholar
  13. 13.
    Mujica Roncery L (2010) Development of high-strength corrosion-resistant austenitic TWIP Steels with C + N, doctoral thesis, Ruhr University BochumGoogle Scholar
  14. 14.
    Berns H, Gavriljuk VG (2007) Steel of highest fracture energy, Key engineering materials, vols 345–346. Trans Tech Publications, pp 421–424Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans Berns
    • 1
  • Valentin Gavriljuk
    • 2
  • Sascha Riedner
    • 3
  1. 1.Ruhr-UniversityBochumGermany
  2. 2.Institute for Metal PhysicsKievUkraine
  3. 3.DEW Steel CompanyKamenGermany

Personalised recommendations