A Novel Strategy for Efficient Negotiation in Complex Environments

  • Siqi Chen
  • Gerhard Weiss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7598)

Abstract

A complex and challenging bilateral negotiation environment for rational autonomous agents is where agents negotiate multi-issue contracts in unknown application domains against unknown opponents under real-time constraints. In this paper we present a novel negotiation strategy called EMAR for this kind of environment which is based on a combination of Empirical Mode Decomposition (EMD) and Autoregressive Moving Average (ARMA). EMAR enables a negotiating agent to adjust its target utility and concession rate adaptively in real-time according to the behavior of its opponent. The experimental results show that this new strategy outperforms the best agents from the latest Automated Negotiation Agents (ANAC) Competition in a wide range of application domains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The First Automated Negotiating Agents Competition (ANAC 2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 113–135. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Box, G., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall (1994)Google Scholar
  3. 3.
    Brzostowski, J., Kowalczyk, R.: Predicting partner’s behaviour in agent negotiation. In: Proceedings of the Fifth Int. Joint Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 355–361. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Carbonneau, R., Kersten, G.E., Vahidov, R.: Predicting opponent’s moves in electronic negotiations using neural networks. Expert Syst. Appl. 34, 1266–1273 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, S., Weiss, G.: An Efficient and Adaptive Approach to Negotiation in Complex Environments. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), Montpellier, France. IOS Press (2012)Google Scholar
  6. 6.
    Coehoorn, R.M., Jennings, N.R.: Learning on opponent’s preferences to make effective multi-issue negotiation trade-offs. In: Proceedings of the 6th Int. Conf. on Electronic Commerce, ICEC 2004, pp. 59–68. ACM, New York (2004)Google Scholar
  7. 7.
    Hunag, N.E., Shen, Z., Long, S.R.: The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A, 903–995 (1998)Google Scholar
  8. 8.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robotics and Autonomous Systems 24(4), 159–182 (1998)CrossRefGoogle Scholar
  9. 9.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artif. Intell. 142(2), 205–237 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Flandrin, P., Rilling, G., Gonçalvès, P., Basics, I.E.: Empirical mode decomposition as a filter bank. IEEE Signal Proc. Lett. 11, 112–114 (2004)CrossRefGoogle Scholar
  11. 11.
    Hendrikx, M.: A survey of oppnent models in automated negotiation. Technical report, Delft University of Technology, The Netherlands (September 2011)Google Scholar
  12. 12.
    Hindriks, K., Jonker, C., Kraus, S., Lin, R., Tykhonov, D.: Genius: negotiation environment for heterogeneous agents. In: Proceedings of AAMAS 2009, pp. 1397–1398 (2009)Google Scholar
  13. 13.
    Hou, C.: Predicting agents tactics in automated negotiation. In: IEEE / WIC / ACM International Conference on Intelligent Agent Technology, pp. 127–133. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  14. 14.
    Huang, N.E., Shen, S.S.P.: Hilbert-Huang transform and its applications. World Scientific (2005)Google Scholar
  15. 15.
    Huang, N.E., Wu, M.-L., Qu, W., Long, S.R., Shen, S.S.P.: Applications of hilbert-huang transform to non-stationary financial time series analysis. Appl. Stoch. Models Bus. Ind. 19(3), 245–268 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lai, G., Li, C., Sycara, K., Giampapa, J.: Literature review on multi-attribute negotiations. Technical Report CMU-RI-TR-04-66, Robotics Institute, Pittsburgh, PA (December 2004)Google Scholar
  17. 17.
    Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational agents in environments with incomplete information using an automated agent. Artif. Intell. 172, 823–851 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Raiffa, H.: The art and science of negotiation. Harvard University Press, Cambridge (1982)Google Scholar
  19. 19.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Saha, S., Biswas, A., Sen, S.: Modeling opponent decision in repeated one-shot negotiations. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 397–403. ACM, New York (2005)CrossRefGoogle Scholar
  21. 21.
    Williams, C., Robu, V., Gerding, E., Jennings, N.: Using gaussian processes to optimise concession in complex negotiations against unknown opponents. In: Proceedings of the 22nd Internatioanl Joint Conference on Artificial Intelligence. AAAI Press (2011)Google Scholar
  22. 22.
    Yu, L., Wang, S., Lai, K.K.: Forecasting crude oil price with an emd-based neural network ensemble learning paradigm. Energy Economics 30(5), 2623–2635 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Siqi Chen
    • 1
  • Gerhard Weiss
    • 1
  1. 1.Department of Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations