Face-to-Face Contacts at a Conference: Dynamics of Communities and Roles

  • Martin Atzmueller
  • Stephan Doerfel
  • Andreas Hotho
  • Folke Mitzlaff
  • Gerd Stumme
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7472)


This paper focuses on the community analysis of conference participants using their face-to-face contacts, visited talks, and tracks in a social and ubiquitous conferencing scenario. We consider human face-to-face contacts and perform a dynamic analysis of the number of contacts and their lengths. On these dimensions, we specifically investigate user-interaction and community structure according to different special interest groups during a conference. Additionally, using the community information, we examine different roles and their characteristic elements.

The analysis is grounded using real-world conference data capturing community information about participants and their face-to-face contacts. The analysis results indicate, that the face-to-face contacts show inherent community structure grounded using the special interest groups. Furthermore, we provide individual and community-level properties, traces of different behavioral patterns, and characteristic (role) profiles.


Interest Group Social Network Analysis Community Detection Special Interest Group Poster Session 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wongchokprasitti, C., Brusilovsky, P., Para, D.: Conference Navigator 2.0: Community-Based Recommendation for Academic Conferences. In: Proc. Workshop Social Recommender Systems, IUI 2010 (2010)Google Scholar
  2. 2.
    Atzmueller, M., Benz, D., Doerfel, S., Hotho, A., Jäschke, R., Macek, B.E., Mitzlaff, F., Scholz, C., Stumme, G.: Enhancing Social Interactions at Conferences. IT - Information Technology 53(3), 101–107 (2011)CrossRefGoogle Scholar
  3. 3.
    Alani, H., Szomszor, M., Cattuto, C., Van den Broeck, W., Correndo, G., Barrat, A.: Live Social Semantics. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 698–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket Switched Networks and Human Mobility in Conference Environments. In: Proc. 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, WDTN 2005, pp. 244–251. ACM, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Eagle, N., Pentland, A.S.: Reality Mining: Sensing Complex Social Systems. Personal Ubiquitous Comput. 10, 255–268 (2006)CrossRefGoogle Scholar
  6. 6.
    Meriac, M., Fiedler, A., Hohendorf, A., Reinhardt, J., Starostik, M., Mohnke, J.: Localization Techniques for a Mobile Museum Information System. In: Proceedings of WCI (Wireless Communication and Information) (2007)Google Scholar
  7. 7.
    Cattuto, C., den Broeck, W.V., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLoS ONE 5(7) (July 2010)Google Scholar
  8. 8.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.V.: What’s in a crowd? analysis of face-to-face behavioral networks. Journal of Theoretical Biology 271(1), 166–180 (2011)CrossRefGoogle Scholar
  9. 9.
    Barrat, A., Cattuto, C., Szomszor, M., Van den Broeck, W., Alani, H.: Social Dynamics in Conferences: Analyses of Data from the Live Social Semantics Application. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 17–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Stehle, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., den Broeck, W.V., Regis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. CoRR abs/1109.1015 (2011)Google Scholar
  11. 11.
    Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., den Broeck, W.V., Gesualdo, F., Pandolfi, E., Rava, L., Rizzo, C., Tozzi, A.E.: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. CoRR abs/1104.2515 (2011)Google Scholar
  12. 12.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    Chou, B.-H., Suzuki, E.: Discovering Community-Oriented Roles of Nodes in a Social Network. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 52–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Lerner, J.: Role Assignments. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 216–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Scripps, J., Tan, P.-N., Esfahanian, A.-H.: Node Roles and Community Structure in Networks. In: Proc. 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 26–35. ACM, New York (2007)CrossRefGoogle Scholar
  16. 16.
    Diestel, R.: Graph theory. Springer, Berlin (2006)Google Scholar
  17. 17.
    Gaertler, M.: Clustering. In: [12], pp. 178–215Google Scholar
  18. 18.
    Newman, M.E., Girvan, M.: Finding and Evaluating Community Structure in Networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 69(2), 026113.1–026113.15 (2004)Google Scholar
  19. 19.
    Mitzlaff, F., Benz, D., Stumme, G., Hotho, A.: Visit Me, Click Me, Be My Friend: An Analysis of Evidence Networks of User Relationships in Bibsonomy. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, Toronto, Canada (2010)Google Scholar
  20. 20.
    Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical Comparison of Algorithms for Network Community Detection, cite arxiv:1004.3539 (2010)Google Scholar
  21. 21.
    Chin, A., Chignell, M.: Identifying Communities in Blogs: Roles for Social Network Analysis and Survey Instruments. Int. J. Web Based Communities 3, 345–363 (2007)CrossRefGoogle Scholar
  22. 22.
    Freeman, L.: Segregation In Social Networks. Sociological Methods & Research 6(4), 411 (1978)CrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J.: Analysis of Weighted Networks (2004),
  24. 24.
    Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the Definition of Modularity to Directed Graphs with Overlapping Communities. J. Stat. Mech. (2009)Google Scholar
  25. 25.
    Rosvall, M., Bergstrom, C.: An Information-theoretic Framework for Resolving Community Structure in Complex Networks. Proc. Natl. Acad. of Sciences 104(18), 7327 (2007)CrossRefGoogle Scholar
  26. 26.
    Lancichinetti, A., Fortunato, S.: Community Detection Algorithms: A Comparative Analysis, arxiv:0908.1062 (2009)Google Scholar
  27. 27.
    McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2010, pp. 112–119. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  28. 28.
    Scripps, J., Tan, P.N., Esfahanian, A.H.: Exploration of Link Structure and Community-Based Node Roles in Network Analysis. In: ICDM, pp. 649–654 (2007)Google Scholar
  29. 29.
    Atzmueller, M., Lemmerich, F., Krause, B., Hotho, A.: Who are the Spammers? Understandable Local Patterns for Concept Description. In: Proc. 7th Conference on Computer Methods and Systems (2009)Google Scholar
  30. 30.
    Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  31. 31.
    Atzmueller, M., Puppe, F., Buscher, H.-P.: Exploiting Background Knowledge for Knowledge-Intensive Subgroup Discovery. In: Proc. 19th Intl. Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, pp. 647–652 (2005)Google Scholar
  32. 32.
    Atzmüller, M., Puppe, F.: SD-Map – A Fast Algorithm for Exhaustive Subgroup Discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Macek, B.-E., Scholz, C., Atzmueller, M., Stumme, G.: Anatomy of a Conference. In: Proc. 23rd ACM Conference on Hypertext and Social Media. ACM Press (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Atzmueller
    • Stephan Doerfel
      • Andreas Hotho
        • Folke Mitzlaff
          • Gerd Stumme

            There are no affiliations available

            Personalised recommendations