Modeling the Effects of Software on Safety and Reliability in Complex Embedded Systems

  • Max Steiner
  • Patric Keller
  • Peter Liggesmeyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7613)


The development of autonomous vehicle systems demands the increased usage of software based control mechanisms. Generally, this leads to very complex systems, whose proper functioning has to be ensured. In our work we aim at investigating and assessing the potential effects of software issues on the safety, reliability and availability of complex embedded autonomous systems. One of the key aspects of the research concerns the mapping of functional descriptions in form of integrated behavior-based control networks to State-Event Fault Tree models.


safety analysis reliability analysis state-event fault trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of software component reliability. In: Proceedings of the 30th International Conference on Software Engineering, ICSE 2008, pp. 111–120. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Förster, M., Trapp, M.: Fault tree analysis of software-controlled component systems based on second-order probabilities. In: ISSRE 2009 Proceedings (2009)Google Scholar
  3. 3.
    Kaiser, B., Gramlich, C., Förster, M.: State-event-fault-trees – A safety analysis model for software controlled systems. Reliability Engineering & System Safety 92(11), 1521–1537 (2007); In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp. 195–209. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees. In: 8th Australian Workshop on Safety Critical Systems and Software, Canberra (October 2003)Google Scholar
  5. 5.
    Lano, K., Clark, D., Androutsopoulos, K.: Safety and Security Analysis of Object-Oriented Models. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS, vol. 2434, pp. 82–93. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    McDermid, J.: Software Hazard and Safety Analysis. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 23–34. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Min, S.-Y., Jan, Y.-K., Cha, S.-D., Kwon, Y.-R., Bae, D.-H.: Safety Verification of Ada95 Programs Using Software Fault Trees. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 226–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Priese, L., Wimmel, H.: Petri-Netze. Springer (2008)Google Scholar
  9. 9.
    Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1), 46–67 (2010)CrossRefGoogle Scholar
  10. 10.
    Sacha, K.: Safety Verification of Software Using Structured Petri Nets. In: Ehrenberger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516, pp. 329–342. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Schäfer, B.H.: Robot Control Design Schemata and their Application in Off-road Robotics. Ph.D. thesis, TU Kaiserslautern (2011)Google Scholar
  12. 12.
    TU Berlin, Real-Time Systems and Robotics group: TimeNET 4.0 (2007),
  13. 13.
    TU Kaiserslautern, AG seda and Fraunhofer IESE: Embedded system safety and reliability analyzer (ESSaRel) (2009),
  14. 14.
    Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. U.S. Nuclear Regulatory Commission (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Max Steiner
    • 1
  • Patric Keller
    • 1
  • Peter Liggesmeyer
    • 1
  1. 1.AG Software Engineering: DependabilityTU KaiserslauternGermany

Personalised recommendations