Generation of Operational Transformation Rules from Examples of Model Transformations

  • Hajer Saada
  • Xavier Dolques
  • Marianne Huchard
  • Clémentine Nebut
  • Houari Sahraoui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7590)


Model transformation by example (MTBE) aims at defining a model transformation according to a set of examples of this transformation. Examples are given in the form of pairs, each having an input model and its corresponding output transformed model, with the transformation traces. The transformation rules are then automatically extracted from the examples. In this paper, we propose a two-step approach to generate the transformation rules. In a first step, transformation patterns are learned from the examples through a classification of the model elements of the examples, and a classification of the transformation links using Formal Concept Analysis. In a second step, those transformation patterns are analyzed in order to select the more pertinent ones and to transform them into operational transformation rules written for the Jess rule engine. The generated rules are then executed on examples to evaluate their relevance through classical precision/recall measures.


Transformation Rule Operational Rule Inductive Logic Programming Formal Concept Analysis Concrete Syntax 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with coma++. In: Özcan, F. (ed.) SIGMOD Conference, pp. 906–908. ACM (2005)Google Scholar
  2. 2.
    Balogh, Z., Varró, D.: Model transformation by example using inductive logic programming. Software and Systems Modeling 8(3), 347–364 (2009)CrossRefGoogle Scholar
  3. 3.
    Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the atl model transformation language: Transforming xslt into xquery. In: 2nd OOPSLA Workshop on Generative Techniques in the Context of Model Driven Architecture (2003)Google Scholar
  4. 4.
    Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: Viatra: Visual automated transformations for formal verification and validation of uml models. In: Proceedings of the 17th IEEE International Conference on Automated Software Engineering. IEEE Computer Society (2002)Google Scholar
  5. 5.
    Daniele, L.M.: Towards a Rule-based Approach for Context-Aware Applications. Ph.D. thesis, University of Twente The Netherlands (May 2006)Google Scholar
  6. 6.
    Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching transformation and weaving models. In: International Conference SAC 2007, pp. 963–970. ACM (2007)Google Scholar
  7. 7.
    Dolques, X., Dogui, A., Falleri, J.R., Huchard, M., Nebut, C., Pfister, F.: Easing Model Transformation Learning with Automatically Aligned Examples. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 189–204. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Dolques, X., Huchard, M., Nebut, C.: From transformation traces to transformation rules: Assisting model driven engineering approach with formal concept analysis. In: Supplementary Proceedings of ICCS 2009, pp. 15–29 (2009)Google Scholar
  9. 9.
    Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel Matching for Automatic Model Transformation Generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations. Springer (1999)Google Scholar
  11. 11.
    García-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model Transformation By-Example: An Algorithm for Generating Many-to-Many Transformation Rules in Several Model Transformation Languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 52–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Huchard, M., Hacène, M.R., Roume, C., Valtchev, P.: Relational concept discovery in structured datasets. Ann. Math. Artif. Intell. 49(1-4), 39–76 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies: A Step to the Semantic Integration of Modeling Languages. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 528–542. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Kessentini, M.: Transformation by Example. Ph.D. thesis, University of Montreal (2010)Google Scholar
  17. 17.
    Kessentini, M., Sahraoui, H., Boukadoum, M.: Model Transformation as an Optimization Problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Kessentini, M., Sahraoui, H., Boukadoum, M.: Méta-modélisation de la transformation de modéles par l’exemple: approche méta-heuristiques. In: Carré, B., Zendra, O. (eds.) LMO 2009: Langages et Modéles á Objets, Cepadués, Nancy, pp. 75–90 (March 2009)Google Scholar
  19. 19.
    Kessentini, M., Sahraoui, H., Boukadoum, M., Ben Omar, O.: Model transformation by example: a search-based approach. Software and Systems Modeling Journal (2010) (to appear)Google Scholar
  20. 20.
    Langer, P., Wimmer, M., Kappel, G.: Model-to-Model Transformations By Demonstration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 153–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context of model driven engineering: From theory to practice. In: Sobh, T., Elleithy, K. (eds.) Advances in Systems, Computing Sciences and Software Engineering, pp. 219–227. Springer (2006)Google Scholar
  22. 22.
    Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Generating Transformation Definition from Mapping Specification: Application to Web Service Platform. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 309–325. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: ICDE, pp. 117–128. IEEE Computer Society (2002)Google Scholar
  24. 24.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19(20), 629–679 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Noy, N.F., Musen, M.A.: Anchor-prompt: Using non-local context for semantic matching. In: Proc. of the Workshop on Ontologies and Information Sharing at IJCAI 2001, Seattle (USA), pp. 63–70 (2001)Google Scholar
  27. 27.
    Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Varró, D.: Model Transformation by Example. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation generation by-example. In: HICSS, p. 285 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hajer Saada
    • 1
  • Xavier Dolques
    • 2
  • Marianne Huchard
    • 1
  • Clémentine Nebut
    • 1
  • Houari Sahraoui
    • 3
  1. 1.LIRMMUniversité de Montpellier 2 et CNRSMontpellierFrance
  2. 2.INRIA, Centre Inria Rennes - Bretagne AtlantiqueRennesFrance
  3. 3.DIROUniversité de MontréalCanada

Personalised recommendations