Applying a Consistency Checking Framework for Heterogeneous Models and Artifacts in Industrial Product Lines

  • Michael Vierhauser
  • Paul Grünbacher
  • Wolfgang Heider
  • Gerald Holl
  • Daniela Lettner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7590)


Product line engineering relies on heterogeneous models and artifacts to define and implement the product line’s reusable assets. The complexity and heterogeneity of product line artifacts as well as their interdependencies make it hard to maintain consistency during development and evolution, regardless of the modeling approaches used. Engineers thus need support for detecting and resolving inconsistencies within and between the various artifacts. In this paper we present a framework for checking and maintaining consistency of arbitrary product line artifacts. Our approach is flexible and extensible regarding the supported artifact types and the definition of constraints. We discuss tool support developed for the DOPLER product line tool suite. We report the results of applying the approach to sales support applications of industrial product lines.


Model-based product lines consistency checking sales support 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balzer, R.: Tolerating inconsistency. In: Proceedings of the 13th International Conference on Software Engineering, pp. 158–165. IEEE Computer Society Press (1991)Google Scholar
  2. 2.
    Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency through operation-based model construction. In: Proceedings of the 30th International Conference on Software Engineering, pp. 511–520. ACM (2008)Google Scholar
  3. 3.
    Campbell, L.A., Cheng, B.H.C., McUmber, W.E., Stirewalt, K.: Automatically detecting and visualising errors in UML diagrams. Requirements Engineering 7(4), 264–287 (2002)CrossRefGoogle Scholar
  4. 4.
    Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool features and tough decisions: A comparison of variability modeling approaches. In: International Workshop on Variability Modelling of Software-Intensive Systems, pp. 173–182. ACM (2012)Google Scholar
  5. 5.
    Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-formedness OCL constraints. In: Proceedings of the 5th International Conference on Generative Programming and Component Engineering, pp. 211–220. ACM (2006)Google Scholar
  6. 6.
    Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-oriented variability modeling: a multiple case study. Automated Software Engineering 18(1), 77–114 (2011)CrossRefGoogle Scholar
  7. 7.
    Egyed, A.: Instant consistency checking for the UML. In: Proceedings of the 28th International Conference on Software Engineering, pp. 381–390. ACM (2006)Google Scholar
  8. 8.
    Elsner, C., Lohmann, D., Schröder-Preikschat, W.: Fixing configuration inconsistencies across file type boundaries. In: Euromicro Conference on Software Engineering and Advanced Applications, pp. 116–123 (2011)Google Scholar
  9. 9.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable object-oriented software. Addison-Wesley, Boston (1995)Google Scholar
  10. 10.
    Groher, I., Reder, A., Egyed, A.: Incremental Consistency Checking of Dynamic Constraints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 203–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Heider, W., Rabiser, R., Grünbacher, P.: Facilitating the evolution of products in product line engineering by capturing and replaying configuration decisions. International Journal on Software Tools for Technology Transfer (2012)Google Scholar
  12. 12.
    Johnson, S., Bosch, J.: Quantifying software product line ageing. In: Proceedings of the Workshop on Software Product Lines at ICSE 2000, pp. 27–30. ACM (2000)Google Scholar
  13. 13.
    Lettner, D., Vierhauser, M., Rabiser, R., Grn̈ubacher, P.: Supporting end users with business calculations in product configuration. In: Proceedings of the of the 16th International Software Product Line Conference, Salvador, Brazil (2012)Google Scholar
  14. 14.
    van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer (2007)Google Scholar
  15. 15.
    Murta, L.G.P., van der Hoek, A., Werner, C.M.L.: ArchTrace: Policy-based support for managing evolving architecture-to-implementation traceability links. In: Proceedings of the International Conference on Automated Software Engineering, pp. 135–144 (2006)Google Scholar
  16. 16.
    Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking. ACM Transactions on Software Engineering Methodology 12(1), 28–63 (2003)CrossRefGoogle Scholar
  17. 17.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus (2005)zbMATHGoogle Scholar
  18. 18.
    Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting product derivation by adapting and augmenting variability models. In: Proceedings of the 11th International Software Product Lines Conference, pp. 141–150. IEEE Computer Society (2007)Google Scholar
  19. 19.
    Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Grünbacher, P., Schwanninger, C.: A Flexible Approach for Generating Product-Specific Documents in Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 47–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Reder, A., Egyed, A.: Model/Analyzer: a tool for detecting, visualizing and fixing design errors in UML. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 347–348. ACM, New York (2010)CrossRefGoogle Scholar
  21. 21.
    Straeten, R.V.D., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to maintain consistency between UML models. In: Proceedings of the 6th International UML Conference, pp. 326–340 (2003)Google Scholar
  22. 22.
    Tsiolakis, A., Ehrig, H.: Consistency analysis of UML class and sequence diagrams using attributed graph grammars. In: Proceedings of Graph Transformation and Graph Grammars, Berlin, Germany, pp. 77–86 (2000)Google Scholar
  23. 23.
    Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and scalable consistency checking on product line variability models. In: Pecheur, C., Andrews, J., Nitto, E.D. (eds.) Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering, pp. 63–72. ACM (2010)Google Scholar
  24. 24.
    Vierhauser, M., Holl, G., Rabiser, R., Grünbacher, P., Lehofer, M., Stürmer, U.: A deployment infrastructure for product line models and tools. In: Proceedings of the 15th International Software Product Line Conference, pp. 287–294. IEEE Computer Society (2011)Google Scholar
  25. 25.
    Zisman, A., Kozlenkov, A.: Knowledge base approach to consistency management of UML specification. In: Proceedings of the International Conference on Automated Software Engineering, pp. 359–363 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Vierhauser
    • 1
  • Paul Grünbacher
    • 2
  • Wolfgang Heider
    • 3
  • Gerald Holl
    • 3
  • Daniela Lettner
    • 3
  1. 1.Siemens VAI Metals TechnologiesLinzAustria
  2. 2.Systems Engineering and AutomationJohannes Kepler UniversityLinzAustria
  3. 3.Christian Doppler Laboratory for Automated Software EngineeringJohannes Kepler UniversityLinzAustria

Personalised recommendations