Parallelism and Concurrency of Stochastic Graph Transformations

  • Reiko Heckel
  • Hartmut Ehrig
  • Ulrike Golas
  • Frank Hermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7562)


Graph transformation systems (GTS) have been proposed for high-level stochastic modelling of dynamic systems and networks. The resulting systems can be described as semi-Markov processes with graphs as states and transformations as transitions. The operational semantics of such processes can be explored through stochastic simulation. In this paper, we develop the basic theory of stochastic graph transformation, including generalisations of the Parallelism and Concurrency Theorems and their application to computing the completion time of a concurrent process.


Completion Time Graph Transformation Sequential Composition Business Process Model Transformation Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, C., Hermann, F., Groote, J.F.: Generation and Evaluation of Business Continuity Processes; Using Algebraic Graph Transformation and the mCRL2 Process Algebra. Journal of Research and Practice in Information Technology 43(1), 65–85 (2011)Google Scholar
  2. 2.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag New York, Inc., Secaucus (2006)zbMATHGoogle Scholar
  3. 3.
    Grinstead, C., Snell, J.: Introduction to Probability. Dartmouth Chance Project (2005),
  4. 4.
    Heckel, R.: Stochastic Analysis of Graph Transformation Systems: A Case Study in P2P Networks. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 53–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Hermann, F.: Analysis and Optimization of Visual Enterprise Models Based on Graph and Model Transformation. Ph.D. thesis, TU Berlin (2011),
  6. 6.
    Lack, S., Sobociński, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    van der Linden, W.J.: A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics 31(2), 181–204 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wolfram Research: Mathematica 8.0 (2012),
  9. 9.
    Mielke, A.: Elements for response-time statistics in ERP transaction systems. Perform. Eval. 63(7), 635–653 (2006)CrossRefGoogle Scholar
  10. 10.
    Möhring, R.H.: Scheduling under Uncertainty: Bounding the Makespan Distribution. In: Alt, H. (ed.) Computational Discrete Mathematics. LNCS, vol. 2122, pp. 79–97. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    TFS, TU Berlin: AGG: The Attributed Graph Grammar System,
  12. 12.
    Torrini, P., Heckel, R., Ráth, I.: Stochastic Simulation of Graph Transformation Systems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 154–157. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234 (2007)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Reiko Heckel
    • 1
  • Hartmut Ehrig
    • 2
  • Ulrike Golas
    • 3
  • Frank Hermann
    • 4
  1. 1.University of LeicesterUK
  2. 2.Technische Universität BerlinGermany
  3. 3.Konrad-Zuse-Zentrum für Informationstechnik BerlinGermany
  4. 4.University of LuxembourgLuxembourg

Personalised recommendations